Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpALT Unicode version

Theorem sspwimpALT 27970
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 27970 is the completed proof in conventional notation of the Virtual Deduction proof http://www.virtualdeduction.com/sspwimpaltvd.html. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 27609 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction ( e.g. , the sub-theorem whose assertion is step 9 used elpwgded 27602). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem ( e.g. , the sub-theorem whose assertion is step 5 used elpwi 3635) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimpALT  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
Dummy variable  x is distinct from all other variables.

Proof of Theorem sspwimpALT
StepHypRef Expression
1 vex 2793 . . . . . . . 8  |-  x  e. 
_V
21a1i 12 . . . . . . 7  |-  (  T. 
->  x  e.  _V )
3 id 21 . . . . . . . . 9  |-  ( x  e.  ~P A  ->  x  e.  ~P A
)
4 elpwi 3635 . . . . . . . . 9  |-  ( x  e.  ~P A  ->  x  C_  A )
53, 4syl 17 . . . . . . . 8  |-  ( x  e.  ~P A  ->  x  C_  A )
6 id 21 . . . . . . . 8  |-  ( A 
C_  B  ->  A  C_  B )
75, 6sylan9ssr 3195 . . . . . . 7  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  C_  B
)
82, 7elpwgded 27602 . . . . . 6  |-  ( (  T.  /\  ( A 
C_  B  /\  x  e.  ~P A ) )  ->  x  e.  ~P B )
98uunT1 27824 . . . . 5  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  e.  ~P B )
109ex 425 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
1110alrimiv 1618 . . 3  |-  ( A 
C_  B  ->  A. x
( x  e.  ~P A  ->  x  e.  ~P B ) )
12 dfss2 3171 . . . 4  |-  ( ~P A  C_  ~P B  <->  A. x ( x  e. 
~P A  ->  x  e.  ~P B ) )
1312biimpri 199 . . 3  |-  ( A. x ( x  e. 
~P A  ->  x  e.  ~P B )  ->  ~P A  C_  ~P B
)
1411, 13syl 17 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
1514idi 2 1  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    T. wtru 1309   A.wal 1528    e. wcel 1685   _Vcvv 2790    C_ wss 3154   ~Pcpw 3627
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-in 3161  df-ss 3168  df-pw 3629
  Copyright terms: Public domain W3C validator