Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stdpc4-2 Unicode version

Theorem stdpc4-2 27441
Description: Theorem *11.1 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
stdpc4-2  |-  ( A. x A. y ph  ->  [ z  /  x ] [ w  /  y ] ph )

Proof of Theorem stdpc4-2
StepHypRef Expression
1 stdpc4 2077 . . 3  |-  ( A. y ph  ->  [ w  /  y ] ph )
21alimi 1565 . 2  |-  ( A. x A. y ph  ->  A. x [ w  / 
y ] ph )
3 stdpc4 2077 . 2  |-  ( A. x [ w  /  y ] ph  ->  [ z  /  x ] [ w  /  y ] ph )
42, 3syl 16 1  |-  ( A. x A. y ph  ->  [ z  /  x ] [ w  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1546   [wsb 1655
This theorem is referenced by:  pm11.11  27442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-11 1757  ax-12 1946
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-sb 1656
  Copyright terms: Public domain W3C validator