Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem7 Structured version   Unicode version

Theorem stirlinglem7 27805
Description: Algebraic manipulation of the formula for J(n) (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem7.1  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
stirlinglem7.2  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem7.3  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
Assertion
Ref Expression
stirlinglem7  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( J `
 N ) )
Distinct variable groups:    k, n    n, H    n, K    k, N, n
Allowed substitution hints:    H( k)    J( k, n)    K( k)

Proof of Theorem stirlinglem7
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10521 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10311 . . . . 5  |-  1  e.  ZZ
32a1i 11 . . . 4  |-  ( N  e.  NN  ->  1  e.  ZZ )
4 1e0p1 10410 . . . . . . . 8  |-  1  =  ( 0  +  1 )
54a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( 0  +  1 ) )
65seqeq1d 11329 . . . . . 6  |-  ( N  e.  NN  ->  seq  1 (  +  ,  H )  =  seq  ( 0  +  1 ) (  +  ,  H ) )
7 nn0uz 10520 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
8 0nn0 10236 . . . . . . . 8  |-  0  e.  NN0
98a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  NN0 )
10 stirlinglem7.3 . . . . . . . . . 10  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
1110a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
12 oveq2 6089 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
1312oveq1d 6096 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
1413oveq2d 6097 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  j )  +  1 ) ) )
1513oveq2d 6097 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  j )  +  1 ) ) )
1614, 15oveq12d 6099 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) )
1716oveq2d 6097 . . . . . . . . . 10  |-  ( k  =  j  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
1817adantl 453 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN0 )  /\  k  =  j
)  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
19 simpr 448 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
20 2cn 10070 . . . . . . . . . . 11  |-  2  e.  CC
2120a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  CC )
2220a1i 11 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  2  e.  CC )
23 nn0cn 10231 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  j  e.  CC )
2422, 23mulcld 9108 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  CC )
25 ax-1cn 9048 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2625a1i 11 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  1  e.  CC )
2724, 26addcld 9107 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  CC )
2827adantl 453 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  CC )
29 0re 9091 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
3029a1i 11 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  e.  RR )
31 2re 10069 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
3231a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  2  e.  RR )
33 nn0re 10230 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  j  e.  RR )
3432, 33remulcld 9116 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  RR )
35 1re 9090 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
3635a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  1  e.  RR )
37 2pos 10082 . . . . . . . . . . . . . . . . . . 19  |-  0  <  2
3829, 31, 37ltleii 9196 . . . . . . . . . . . . . . . . . 18  |-  0  <_  2
3938a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  0  <_ 
2 )
40 nn0ge0 10247 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  0  <_ 
j )
4132, 33, 39, 40mulge0d 9603 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <_ 
( 2  x.  j
) )
42 0lt1 9550 . . . . . . . . . . . . . . . . 17  |-  0  <  1
4342a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <  1 )
4434, 36, 41, 43addgegt0d 9600 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  < 
( ( 2  x.  j )  +  1 ) )
4530, 44ltned 9209 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  0  =/=  ( ( 2  x.  j )  +  1 ) )
4645adantl 453 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
0  =/=  ( ( 2  x.  j )  +  1 ) )
4746necomd 2687 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  =/=  0 )
4828, 47reccld 9783 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  CC )
49 nncn 10008 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
5049adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  N  e.  CC )
5121, 50mulcld 9108 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  N
)  e.  CC )
5225a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  CC )
5351, 52addcld 9107 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  e.  CC )
5431a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
55 nnre 10007 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
5654, 55remulcld 9116 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
5735a1i 11 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  1  e.  RR )
5838a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  2 )
5929a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  e.  RR )
60 nngt0 10029 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  <  N )
6159, 55, 60ltled 9221 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  N )
6254, 55, 58, 61mulge0d 9603 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
6342a1i 11 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <  1 )
6456, 57, 62, 63addgegt0d 9600 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
6564gt0ne0d 9591 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
6665adantr 452 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  =/=  0 )
6753, 66reccld 9783 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  N
)  +  1 ) )  e.  CC )
68 2nn0 10238 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
6968a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  NN0 )
7069, 19nn0mulcld 10279 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  j
)  e.  NN0 )
71 1nn0 10237 . . . . . . . . . . . . . 14  |-  1  e.  NN0
7271a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  NN0 )
7370, 72nn0addcld 10278 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  NN0 )
7467, 73expcld 11523 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) )  e.  CC )
7548, 74mulcld 9108 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
7621, 75mulcld 9108 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) )  e.  CC )
7711, 18, 19, 76fvmptd 5810 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) ) )
7877, 76eqeltrd 2510 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  e.  CC )
7910stirlinglem6 27804 . . . . . . 7  |-  ( N  e.  NN  ->  seq  0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
807, 9, 78, 79clim2ser 12448 . . . . . 6  |-  ( N  e.  NN  ->  seq  ( 0  +  1 ) (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq  0
(  +  ,  H
) `  0 )
) )
816, 80eqbrtrd 4232 . . . . 5  |-  ( N  e.  NN  ->  seq  1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq  0
(  +  ,  H
) `  0 )
) )
82 0z 10293 . . . . . . . 8  |-  0  e.  ZZ
83 seq1 11336 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (  seq  0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
8482, 83mp1i 12 . . . . . . 7  |-  ( N  e.  NN  ->  (  seq  0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
8510a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  H  =  ( k  e. 
NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
86 simpr 448 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  k  =  0 )
8786oveq2d 6097 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  k )  =  ( 2  x.  0 ) )
8887oveq1d 6096 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
8988oveq2d 6097 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 1  / 
( ( 2  x.  k )  +  1 ) )  =  ( 1  /  ( ( 2  x.  0 )  +  1 ) ) )
9088oveq2d 6097 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )
9189, 90oveq12d 6099 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) )  =  ( ( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) )
9291oveq2d 6097 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) ) )
9320a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  2  e.  CC )
94 0cn 9084 . . . . . . . . . . . . . 14  |-  0  e.  CC
9594a1i 11 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  e.  CC )
9693, 95mulcld 9108 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  0 )  e.  CC )
9725a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  e.  CC )
9896, 97addcld 9107 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  CC )
9993mul01d 9265 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
2  x.  0 )  =  0 )
10099eqcomd 2441 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  =  ( 2  x.  0 ) )
101100oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
0  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
1025, 101eqtrd 2468 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  1  =  ( ( 2  x.  0 )  +  1 ) )
10363, 102breqtrd 4236 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  0 )  +  1 ) )
104103gt0ne0d 9591 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =/=  0 )
10598, 104reccld 9783 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  e.  CC )
10693, 49mulcld 9108 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
107106, 97addcld 9107 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
108107, 65reccld 9783 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
109102, 71syl6eqelr 2525 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  NN0 )
110108, 109expcld 11523 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  e.  CC )
111105, 110mulcld 9108 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  e.  CC )
11293, 111mulcld 9108 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  e.  CC )
11385, 92, 9, 112fvmptd 5810 . . . . . . 7  |-  ( N  e.  NN  ->  ( H `  0 )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  0 )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) ) )
11499oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  ( 0  +  1 ) )
115114, 4syl6eqr 2486 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  1 )
116115oveq2d 6097 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
1 ) )
11797div1d 9782 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  1 )  =  1 )
118116, 117eqtrd 2468 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  1 )
119115oveq2d 6097 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
1 ) )
120108exp1d 11518 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ 1 )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
121119, 120eqtrd 2468 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
122118, 121oveq12d 6099 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
123108mulid2d 9106 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
124122, 123eqtrd 2468 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
125124oveq2d 6097 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
12693, 97, 107, 65divassd 9825 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
12793mulid1d 9105 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  1 )  =  2 )
128127oveq1d 6096 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
129125, 126, 1283eqtr2d 2474 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
13084, 113, 1293eqtrd 2472 . . . . . 6  |-  ( N  e.  NN  ->  (  seq  0 (  +  ,  H ) `  0
)  =  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )
131130oveq2d 6097 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  -  (  seq  0 (  +  ,  H ) `  0
) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) )
13281, 131breqtrd 4236 . . . 4  |-  ( N  e.  NN  ->  seq  1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )
13397, 106addcld 9107 . . . . 5  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
134133halfcld 10212 . . . 4  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
135 seqex 11325 . . . . 5  |-  seq  1
(  +  ,  K
)  e.  _V
136135a1i 11 . . . 4  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  e.  _V )
137 elnnuz 10522 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
138137biimpi 187 . . . . . 6  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
139138adantl 453 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
14010a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
141 oveq2 6089 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
142141oveq1d 6096 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
143142oveq2d 6097 . . . . . . . . . 10  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
144142oveq2d 6097 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )
145143, 144oveq12d 6099 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )
146145oveq2d 6097 . . . . . . . 8  |-  ( k  =  n  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
147146adantl 453 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
148 elfzuz 11055 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ( ZZ>= `  1 )
)
149 elnnuz 10522 . . . . . . . . . 10  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
150149biimpri 198 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
151 nnnn0 10228 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
152148, 150, 1513syl 19 . . . . . . . 8  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN0 )
153152adantl 453 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
15420a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
155153nn0cnd 10276 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
156154, 155mulcld 9108 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
15725a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
158156, 157addcld 9107 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  CC )
159 elfznn 11080 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
16029a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  e.  RR )
16135a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  e.  RR )
16231a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR )
163 nnre 10007 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
164162, 163remulcld 9116 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
165164, 161readdcld 9115 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
16642a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <  1 )
167 2rp 10617 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
168167a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR+ )
169 nnrp 10621 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR+ )
170168, 169rpmulcld 10664 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
171161, 170ltaddrp2d 10678 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
172160, 161, 165, 166, 171lttrd 9231 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
173172gt0ne0d 9591 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
174159, 173syl 16 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
175174adantl 453 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  =/=  0 )
176158, 175reccld 9783 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  CC )
177108ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
17868a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
179178, 153nn0mulcld 10279 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e. 
NN0 )
18071a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  NN0 )
181179, 180nn0addcld 10278 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e. 
NN0 )
182177, 181expcld 11523 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
183176, 182mulcld 9108 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  e.  CC )
184154, 183mulcld 9108 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  e.  CC )
185140, 147, 153, 184fvmptd 5810 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) ) )
186185, 184eqeltrd 2510 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  e.  CC )
187 addcl 9072 . . . . . 6  |-  ( ( n  e.  CC  /\  i  e.  CC )  ->  ( n  +  i )  e.  CC )
188187adantl 453 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( n  +  i )  e.  CC )
189139, 186, 188seqcl 11343 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  H ) `
 j )  e.  CC )
19025a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
1  e.  CC )
19120a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
2  e.  CC )
19249ad2antrr 707 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  N  e.  CC )
193191, 192mulcld 9108 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 2  x.  N
)  e.  CC )
194190, 193addcld 9107 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 1  +  ( 2  x.  N ) )  e.  CC )
195194halfcld 10212 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( 1  +  ( 2  x.  N
) )  /  2
)  e.  CC )
196 simprl 733 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  n  e.  CC )
197 simprr 734 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
i  e.  CC )
198195, 196, 197adddid 9112 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (
n  +  i ) )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  n )  +  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  i ) ) )
199 stirlinglem7.2 . . . . . . . 8  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
200199a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
201141oveq2d 6097 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
202143, 201oveq12d 6099 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
203202adantl 453 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
204159adantl 453 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
205177, 179expcld 11523 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  CC )
206176, 205mulcld 9108 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  CC )
207200, 203, 204, 206fvmptd 5810 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
208133ad2antrr 707 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  e.  CC )
209 2ne0 10083 . . . . . . . . 9  |-  2  =/=  0
210209a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  =/=  0 )
211208, 154, 184, 210div32d 9813 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 2  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )  /  2 ) ) )
212183, 154, 210divcan3d 9795 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) )  /  2 )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
213212oveq2d 6097 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  / 
2 ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
214208, 176, 182mul12d 9275 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
215107ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  e.  CC )
21665ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  =/=  0 )
217181nn0zd 10373 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  ZZ )
218215, 216, 217exprecd 11531 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
219218oveq2d 6097 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
220215, 181expcld 11523 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
221215, 216, 217expne0d 11529 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =/=  0 )
222208, 220, 221divrecd 9793 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
22349ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
224154, 223mulcld 9108 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
225157, 224addcomd 9268 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
226215, 179expcld 11523 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  e.  CC )
227226, 215mulcomd 9109 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
228225, 227oveq12d 6099 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
229215, 179expp1d 11524 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  x.  (
( 2  x.  N
)  +  1 ) ) )
230229oveq2d 6097 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  /  (
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) ) )
231 2z 10312 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
232231a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
233153nn0zd 10373 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
234232, 233zmulcld 10381 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  ZZ )
235215, 216, 234expne0d 11529 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  =/=  0 )
236215, 215, 226, 216, 235divdiv1d 9821 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
237228, 230, 2363eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
238219, 222, 2373eqtr2d 2474 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
239238oveq2d 6097 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  +  ( 2  x.  N ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
240215, 216dividd 9788 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  1 )
241 1exp 11409 . . . . . . . . . . . . 13  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
242234, 241syl 16 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n ) )  =  1 )
243240, 242eqtr4d 2471 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 1 ^ (
2  x.  n ) ) )
244243oveq1d 6096 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
245157, 215, 216, 179expdivd 11537 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
246244, 245eqtr4d 2471 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )
247246oveq2d 6097 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
248214, 239, 2473eqtrd 2472 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
249211, 213, 2483eqtrd 2472 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
250185eqcomd 2441 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( H `  n
) )
251250oveq2d 6097 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( H `  n )
) )
252207, 249, 2513eqtr2d 2474 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( H `
 n ) ) )
253188, 198, 139, 186, 252seqdistr 11374 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  K ) `
 j )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (  seq  1 (  +  ,  H ) `  j
) ) )
2541, 3, 132, 134, 136, 189, 253climmulc2 12430 . . 3  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( ( log `  ( ( N  + 
1 )  /  N
) )  -  (
2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
25597, 106addcomd 9268 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
256255oveq1d 6096 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )
257256oveq1d 6096 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
258256, 134eqeltrrd 2511 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  e.  CC )
25949, 97addcld 9107 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
260 nnne0 10032 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
261259, 49, 260divcld 9790 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
26255, 57readdcld 9115 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
26355ltp1d 9941 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
26459, 55, 262, 60, 263lttrd 9231 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
265264gt0ne0d 9591 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
266259, 49, 265, 260divne0d 9806 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
267261, 266logcld 20468 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
26893, 107, 65divcld 9790 . . . . 5  |-  ( N  e.  NN  ->  (
2  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
269258, 267, 268subdid 9489 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
270106, 97addcomd 9268 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =  ( 1  +  ( 2  x.  N
) ) )
271270oveq1d 6096 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
272271oveq1d 6096 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
273209a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  =/=  0 )
274107, 93, 65, 273divcan6d 9809 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )  =  1 )
275272, 274oveq12d 6099 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( 2  /  (
( 2  x.  N
)  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
276257, 269, 2753eqtrd 2472 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
277254, 276breqtrd 4236 . 2  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
278 stirlinglem7.1 . . . 4  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
279278a1i 11 . . 3  |-  ( N  e.  NN  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) ) )
280 oveq2 6089 . . . . . . . 8  |-  ( n  =  N  ->  (
2  x.  n )  =  ( 2  x.  N ) )
281280oveq2d 6097 . . . . . . 7  |-  ( n  =  N  ->  (
1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N
) ) )
282281oveq1d 6096 . . . . . 6  |-  ( n  =  N  ->  (
( 1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
283 oveq1 6088 . . . . . . . 8  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
284 id 20 . . . . . . . 8  |-  ( n  =  N  ->  n  =  N )
285283, 284oveq12d 6099 . . . . . . 7  |-  ( n  =  N  ->  (
( n  +  1 )  /  n )  =  ( ( N  +  1 )  /  N ) )
286285fveq2d 5732 . . . . . 6  |-  ( n  =  N  ->  ( log `  ( ( n  +  1 )  /  n ) )  =  ( log `  (
( N  +  1 )  /  N ) ) )
287282, 286oveq12d 6099 . . . . 5  |-  ( n  =  N  ->  (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
288287oveq1d 6096 . . . 4  |-  ( n  =  N  ->  (
( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
289288adantl 453 . . 3  |-  ( ( N  e.  NN  /\  n  =  N )  ->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
290 id 20 . . 3  |-  ( N  e.  NN  ->  N  e.  NN )
291134, 267mulcld 9108 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
292291, 97subcld 9411 . . 3  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
293279, 289, 290, 292fvmptd 5810 . 2  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
294277, 293breqtrrd 4238 1  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( J `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   ...cfz 11043    seq cseq 11323   ^cexp 11382    ~~> cli 12278   logclog 20452
This theorem is referenced by:  stirlinglem9  27807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-tan 12674  df-pi 12675  df-dvds 12853  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-ulm 20293  df-log 20454
  Copyright terms: Public domain W3C validator