Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Unicode version

Theorem stoweidlem32 27795
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1  |-  F/ t
ph
stoweidlem32.2  |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem32.3  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
stoweidlem32.4  |-  H  =  ( t  e.  T  |->  Y )
stoweidlem32.5  |-  ( ph  ->  M  e.  NN )
stoweidlem32.6  |-  ( ph  ->  Y  e.  RR )
stoweidlem32.7  |-  ( ph  ->  G : ( 1 ... M ) --> A )
stoweidlem32.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem32.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem32.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem32.11  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem32  |-  ( ph  ->  P  e.  A )
Distinct variable groups:    f, g,
i, t, G    A, f, g    f, F, g    T, f, g, i, t    ph, f, g, i    g, H    i, M, t    t, Y, x    x, T    x, A    x, Y    ph, x
Allowed substitution hints:    ph( t)    A( t, i)    P( x, t, f, g, i)    F( x, t, i)    G( x)    H( x, t, f, i)    M( x, f, g)    Y( f, g, i)

Proof of Theorem stoweidlem32
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3  |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
2 stoweidlem32.1 . . . 4  |-  F/ t
ph
3 stoweidlem32.3 . . . . . . . . . . 11  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
4 fveq2 5757 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  (
( G `  i
) `  t )  =  ( ( G `
 i ) `  s ) )
54sumeq2sdv 12529 . . . . . . . . . . . 12  |-  ( t  =  s  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  s )
)
65cbvmptv 4325 . . . . . . . . . . 11  |-  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( s  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) )
73, 6eqtri 2462 . . . . . . . . . 10  |-  F  =  ( s  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) )
87a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  F  =  ( s  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) ) )
9 fveq2 5757 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( G `  i
) `  s )  =  ( ( G `
 i ) `  t ) )
109sumeq2sdv 12529 . . . . . . . . . 10  |-  ( s  =  t  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  s )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)
1110adantl 454 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  T )  /\  s  =  t )  ->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  s )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
12 simpr 449 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
13 fzfid 11343 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
1 ... M )  e. 
Fin )
14 simpl 445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ph )
15 stoweidlem32.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : ( 1 ... M ) --> A )
1615fnvinran 27699 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  A )
17 eleq1 2502 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  i )  ->  (
f  e.  A  <->  ( G `  i )  e.  A
) )
1817anbi2d 686 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G `  i )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  i
)  e.  A ) ) )
19 feq1 5605 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G `  i )  ->  (
f : T --> RR  <->  ( G `  i ) : T --> RR ) )
2018, 19imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G `  i )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  i )  e.  A )  -> 
( G `  i
) : T --> RR ) ) )
21 stoweidlem32.11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
2220, 21vtoclg 3017 . . . . . . . . . . . . . 14  |-  ( ( G `  i )  e.  A  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
2316, 22syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
2414, 16, 23mp2and 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i ) : T --> RR )
2524adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i ) : T --> RR )
26 simplr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  t  e.  T )
2725, 26ffvelrnd 5900 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  t )  e.  RR )
2813, 27fsumrecl 12559 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  e.  RR )
298, 11, 12, 28fvmptd 5839 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
3029, 28eqeltrd 2516 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
3130recnd 9145 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
32 stoweidlem32.4 . . . . . . . . . . 11  |-  H  =  ( t  e.  T  |->  Y )
33 eqidd 2443 . . . . . . . . . . . 12  |-  ( s  =  t  ->  Y  =  Y )
3433cbvmptv 4325 . . . . . . . . . . 11  |-  ( s  e.  T  |->  Y )  =  ( t  e.  T  |->  Y )
3532, 34eqtr4i 2465 . . . . . . . . . 10  |-  H  =  ( s  e.  T  |->  Y )
3635a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  H  =  ( s  e.  T  |->  Y ) )
37 eqidd 2443 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  T )  /\  s  =  t )  ->  Y  =  Y )
38 stoweidlem32.6 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  RR )
3938adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  Y  e.  RR )
4036, 37, 12, 39fvmptd 5839 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  Y )
4140, 39eqeltrd 2516 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  RR )
4241recnd 9145 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  CC )
4331, 42mulcomd 9140 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  x.  ( H `
 t ) )  =  ( ( H `
 t )  x.  ( F `  t
) ) )
4440, 29oveq12d 6128 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( H `  t
)  x.  ( F `
 t ) )  =  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
4543, 44eqtr2d 2475 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  ( Y  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( ( F `  t )  x.  ( H `  t )
) )
462, 45mpteq2da 4319 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )  =  ( t  e.  T  |->  ( ( F `  t
)  x.  ( H `
 t ) ) ) )
471, 46syl5eq 2486 . 2  |-  ( ph  ->  P  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t ) ) ) )
48 stoweidlem32.5 . . . 4  |-  ( ph  ->  M  e.  NN )
49 stoweidlem32.8 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
502, 3, 48, 15, 49, 21stoweidlem20 27783 . . 3  |-  ( ph  ->  F  e.  A )
51 stoweidlem32.10 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
5251stoweidlem4 27767 . . . . 5  |-  ( (
ph  /\  Y  e.  RR )  ->  ( t  e.  T  |->  Y )  e.  A )
5338, 52mpdan 651 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  Y )  e.  A
)
5432, 53syl5eqel 2526 . . 3  |-  ( ph  ->  H  e.  A )
55 nfmpt1 4323 . . . . . 6  |-  F/_ t
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
563, 55nfcxfr 2575 . . . . 5  |-  F/_ t F
5756nfeq2 2589 . . . 4  |-  F/ t  f  =  F
58 nfmpt1 4323 . . . . . 6  |-  F/_ t
( t  e.  T  |->  Y )
5932, 58nfcxfr 2575 . . . . 5  |-  F/_ t H
6059nfeq2 2589 . . . 4  |-  F/ t  g  =  H
61 stoweidlem32.9 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6257, 60, 61stoweidlem6 27769 . . 3  |-  ( (
ph  /\  F  e.  A  /\  H  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t ) ) )  e.  A )
6350, 54, 62mpd3an23 1282 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t )
) )  e.  A
)
6447, 63eqeltrd 2516 1  |-  ( ph  ->  P  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   F/wnf 1554    = wceq 1653    e. wcel 1727    e. cmpt 4291   -->wf 5479   ` cfv 5483  (class class class)co 6110   RRcr 9020   1c1 9022    + caddc 9024    x. cmul 9026   NNcn 10031   ...cfz 11074   sum_csu 12510
This theorem is referenced by:  stoweidlem44  27807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-oi 7508  df-card 7857  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-fz 11075  df-fzo 11167  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-clim 12313  df-sum 12511
  Copyright terms: Public domain W3C validator