Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Unicode version

Theorem stoweidlem7 27723
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on  T  \  U, and qn > 1 - ε on  V. Here it is proven that, for  n large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable  A is used to represent (k*δ) in the paper, and  B is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1  |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )
stoweidlem7.2  |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )
stoweidlem7.3  |-  ( ph  ->  A  e.  RR )
stoweidlem7.4  |-  ( ph  ->  1  <  A )
stoweidlem7.5  |-  ( ph  ->  B  e.  RR+ )
stoweidlem7.6  |-  ( ph  ->  B  <  1 )
stoweidlem7.7  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweidlem7  |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
Distinct variable groups:    i, n, A    B, i, n    i, E, n    ph, i, n   
n, F    n, G
Allowed substitution hints:    F( i)    G( i)

Proof of Theorem stoweidlem7
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 10513 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1z 10303 . . . . . 6  |-  1  e.  ZZ
32a1i 11 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
4 stoweidlem7.7 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
5 stoweidlem7.2 . . . . . . 7  |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )
65a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  G  =  ( i  e.  NN0  |->  ( B ^ i ) ) )
7 oveq2 6081 . . . . . . 7  |-  ( i  =  k  ->  ( B ^ i )  =  ( B ^ k
) )
87adantl 453 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  =  k )  -> 
( B ^ i
)  =  ( B ^ k ) )
9 nnnn0 10220 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  NN0 )
109adantl 453 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
11 stoweidlem7.5 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR+ )
1211rpcnd 10642 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
1312adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
1413, 10expcld 11515 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( B ^ k )  e.  CC )
156, 8, 10, 14fvmptd 5802 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( B ^ k
) )
16 1re 9082 . . . . . . . . . . 11  |-  1  e.  RR
1716a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
1817renegcld 9456 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  RR )
19 0re 9083 . . . . . . . . . 10  |-  0  e.  RR
2019a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
2111rpred 10640 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
22 0lt1 9542 . . . . . . . . . . . 12  |-  0  <  1
2319, 16ltnegi 9563 . . . . . . . . . . . 12  |-  ( 0  <  1  <->  -u 1  <  -u 0 )
2422, 23mpbi 200 . . . . . . . . . . 11  |-  -u 1  <  -u 0
25 neg0 9339 . . . . . . . . . . 11  |-  -u 0  =  0
2624, 25breqtri 4227 . . . . . . . . . 10  |-  -u 1  <  0
2726a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  <  0
)
2811rpgt0d 10643 . . . . . . . . 9  |-  ( ph  ->  0  <  B )
2918, 20, 21, 27, 28lttrd 9223 . . . . . . . 8  |-  ( ph  -> 
-u 1  <  B
)
30 stoweidlem7.6 . . . . . . . 8  |-  ( ph  ->  B  <  1 )
3121, 17absltd 12224 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  B
)  <  1  <->  ( -u 1  <  B  /\  B  <  1 ) ) )
3229, 30, 31mpbir2and 889 . . . . . . 7  |-  ( ph  ->  ( abs `  B
)  <  1 )
3312, 32expcnv 12635 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( B ^ i ) )  ~~>  0 )
345, 33syl5eqbr 4237 . . . . 5  |-  ( ph  ->  G  ~~>  0 )
351, 3, 4, 15, 34climi 12296 . . . 4  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )
36 r19.26 2830 . . . . . . . . . . . . . 14  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  <->  ( A. k  e.  ( ZZ>= `  n ) ( B ^ k )  e.  CC  /\  A. k  e.  ( ZZ>= `  n )
( abs `  (
( B ^ k
)  -  0 ) )  <  E ) )
3736simprbi 451 . . . . . . . . . . . . 13  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( B ^ k
)  -  0 ) )  <  E )
3837ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  A. k  e.  (
ZZ>= `  n ) ( abs `  ( ( B ^ k )  -  0 ) )  <  E )
39 oveq2 6081 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  ( B ^ k )  =  ( B ^ i
) )
4039oveq1d 6088 . . . . . . . . . . . . . . 15  |-  ( k  =  i  ->  (
( B ^ k
)  -  0 )  =  ( ( B ^ i )  - 
0 ) )
4140fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( k  =  i  ->  ( abs `  ( ( B ^ k )  - 
0 ) )  =  ( abs `  (
( B ^ i
)  -  0 ) ) )
4241breq1d 4214 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  (
( abs `  (
( B ^ k
)  -  0 ) )  <  E  <->  ( abs `  ( ( B ^
i )  -  0 ) )  <  E
) )
4342rspccva 3043 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( abs `  ( ( B ^ k )  -  0 ) )  <  E  /\  i  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( B ^
i )  -  0 ) )  <  E
)
4438, 43sylancom 649 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( abs `  (
( B ^ i
)  -  0 ) )  <  E )
45 simplll 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ph )
4645, 11syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  B  e.  RR+ )
4746rpred 10640 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  B  e.  RR )
48 simpllr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  n  e.  NN )
49 nnnn0 10220 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  NN0 )
5048, 49syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  n  e.  NN0 )
51 eluznn0 10538 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  /\  i  e.  ( ZZ>= `  n ) )  -> 
i  e.  NN0 )
5250, 51sylancom 649 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  i  e.  NN0 )
5347, 52reexpcld 11532 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( B ^
i )  e.  RR )
54 rpre 10610 . . . . . . . . . . . . 13  |-  ( E  e.  RR+  ->  E  e.  RR )
5545, 4, 543syl 19 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  E  e.  RR )
56 recn 9072 . . . . . . . . . . . . . . . . 17  |-  ( ( B ^ i )  e.  RR  ->  ( B ^ i )  e.  CC )
5756subid1d 9392 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ i )  e.  RR  ->  (
( B ^ i
)  -  0 )  =  ( B ^
i ) )
5857adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( B ^
i )  -  0 )  =  ( B ^ i ) )
5958fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( abs `  (
( B ^ i
)  -  0 ) )  =  ( abs `  ( B ^ i
) ) )
6059breq1d 4214 . . . . . . . . . . . . 13  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( B ^ i
)  -  0 ) )  <  E  <->  ( abs `  ( B ^ i
) )  <  E
) )
61 abslt 12110 . . . . . . . . . . . . 13  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  ( B ^ i ) )  <  E  <->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) ) )
6260, 61bitrd 245 . . . . . . . . . . . 12  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( B ^ i
)  -  0 ) )  <  E  <->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) ) )
6353, 55, 62syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( ( abs `  ( ( B ^
i )  -  0 ) )  <  E  <->  (
-u E  <  ( B ^ i )  /\  ( B ^ i )  <  E ) ) )
6444, 63mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) )
6564simprd 450 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( B ^
i )  <  E
)
66 uznnssnn 10516 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( ZZ>=
`  n )  C_  NN )
6766sselda 3340 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  i  e.  ( ZZ>= `  n ) )  -> 
i  e.  NN )
6848, 67sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  i  e.  NN )
6921adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN )  ->  B  e.  RR )
70 nnnn0 10220 . . . . . . . . . . . . 13  |-  ( i  e.  NN  ->  i  e.  NN0 )
7170adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN )  ->  i  e. 
NN0 )
7269, 71reexpcld 11532 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  ( B ^ i )  e.  RR )
734rpred 10640 . . . . . . . . . . . 12  |-  ( ph  ->  E  e.  RR )
7473adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  E  e.  RR )
7516a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  1  e.  RR )
7672, 74, 75ltsub2d 9628 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( B ^ i )  <  E  <->  ( 1  -  E )  < 
( 1  -  ( B ^ i ) ) ) )
7745, 68, 76syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( ( B ^ i )  < 
E  <->  ( 1  -  E )  <  (
1  -  ( B ^ i ) ) ) )
7865, 77mpbid 202 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( 1  -  E )  <  (
1  -  ( B ^ i ) ) )
7978ralrimiva 2781 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )  ->  A. i  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ i
) ) )
8039oveq2d 6089 . . . . . . . . 9  |-  ( k  =  i  ->  (
1  -  ( B ^ k ) )  =  ( 1  -  ( B ^ i
) ) )
8180breq2d 4216 . . . . . . . 8  |-  ( k  =  i  ->  (
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  <->  ( 1  -  E )  < 
( 1  -  ( B ^ i ) ) ) )
8281cbvralv 2924 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) )  <->  A. i  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ i
) ) )
8379, 82sylibr 204 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )  ->  A. k  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ k
) ) )
8483ex 424 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  ->  A. k  e.  ( ZZ>= `  n )
( 1  -  E
)  <  ( 1  -  ( B ^
k ) ) ) )
8584reximdva 2810 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( B ^
k )  e.  CC  /\  ( abs `  (
( B ^ k
)  -  0 ) )  <  E )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) ) ) )
8635, 85mpd 15 . . 3  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) ) )
87 stoweidlem7.1 . . . . . . 7  |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )
8887a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) ) )
89 oveq2 6081 . . . . . . 7  |-  ( i  =  k  ->  (
( 1  /  A
) ^ i )  =  ( ( 1  /  A ) ^
k ) )
9089adantl 453 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  =  k )  -> 
( ( 1  /  A ) ^ i
)  =  ( ( 1  /  A ) ^ k ) )
91 stoweidlem7.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
9291recnd 9106 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
9322a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <  1 )
94 stoweidlem7.4 . . . . . . . . . . 11  |-  ( ph  ->  1  <  A )
9520, 17, 91, 93, 94lttrd 9223 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
9695gt0ne0d 9583 . . . . . . . . 9  |-  ( ph  ->  A  =/=  0 )
9792, 96reccld 9775 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
9897adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  A )  e.  CC )
9998, 10expcld 11515 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  A ) ^ k )  e.  CC )
10088, 90, 10, 99fvmptd 5802 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( 1  /  A ) ^ k
) )
10191, 96rereccld 9833 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
10291, 95recgt0d 9937 . . . . . . . . 9  |-  ( ph  ->  0  <  ( 1  /  A ) )
10318, 20, 101, 27, 102lttrd 9223 . . . . . . . 8  |-  ( ph  -> 
-u 1  <  (
1  /  A ) )
104 ltdiv23 9893 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( A  e.  RR  /\  0  <  A )  /\  ( 1  e.  RR  /\  0  <  1 ) )  -> 
( ( 1  /  A )  <  1  <->  ( 1  /  1 )  <  A ) )
10517, 91, 95, 17, 93, 104syl122anc 1193 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  /  A )  <  1  <->  ( 1  /  1 )  <  A ) )
106 ax-1cn 9040 . . . . . . . . . . . . 13  |-  1  e.  CC
107106a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
108107div1d 9774 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  1
)  =  1 )
109108breq1d 4214 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
1 )  <  A  <->  1  <  A ) )
110105, 109bitrd 245 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  <  1  <->  1  <  A ) )
11194, 110mpbird 224 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  <  1 )
112101, 17absltd 12224 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  (
1  /  A ) )  <  1  <->  ( -u 1  <  ( 1  /  A )  /\  ( 1  /  A
)  <  1 ) ) )
113103, 111, 112mpbir2and 889 . . . . . . 7  |-  ( ph  ->  ( abs `  (
1  /  A ) )  <  1 )
11497, 113expcnv 12635 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )  ~~>  0 )
11587, 114syl5eqbr 4237 . . . . 5  |-  ( ph  ->  F  ~~>  0 )
1161, 3, 4, 100, 115climi2 12297 . . . 4  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  <  E
)
117 simpll 731 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ph )
11866ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ZZ>= `  n )  C_  NN )
119 simpr 448 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ( ZZ>= `  n )
)
120118, 119sseldd 3341 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
12199subid1d 9392 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  A
) ^ k )  -  0 )  =  ( ( 1  /  A ) ^ k
) )
122121fveq2d 5724 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  =  ( abs `  ( ( 1  /  A ) ^ k ) ) )
123101adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  A )  e.  RR )
124123, 10reexpcld 11532 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  A ) ^ k )  e.  RR )
12520, 101, 102ltled 9213 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  ( 1  /  A ) )
126125adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  A
) )
127123, 10, 126expge0d 11533 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  /  A ) ^ k
) )
128124, 127absidd 12217 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( 1  /  A ) ^ k
) )  =  ( ( 1  /  A
) ^ k ) )
129122, 128eqtrd 2467 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  =  ( ( 1  /  A
) ^ k ) )
130129breq1d 4214 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( ( 1  /  A
) ^ k )  -  0 ) )  <  E  <->  ( (
1  /  A ) ^ k )  < 
E ) )
131130biimpd 199 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( ( 1  /  A
) ^ k )  -  0 ) )  <  E  ->  (
( 1  /  A
) ^ k )  <  E ) )
132117, 120, 131syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( ( 1  /  A ) ^ k )  - 
0 ) )  < 
E  ->  ( (
1  /  A ) ^ k )  < 
E ) )
133132ralimdva 2776 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  <  E  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1  /  A
) ^ k )  <  E ) )
134133reximdva 2810 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( ( 1  /  A ) ^ k
)  -  0 ) )  <  E  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E ) )
135116, 134mpd 15 . . 3  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E )
1361rexanuz2 12145 . . 3  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E )  <->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E ) )
13786, 135, 136sylanbrc 646 . 2  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )
138 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  ( ( 1  /  A ) ^ k
)  <  E )
)
139 nnz 10295 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  ZZ )
140 uzid 10492 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
141139, 140syl 16 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  n )
)
142141ad2antlr 708 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  n  e.  (
ZZ>= `  n ) )
143 oveq2 6081 . . . . . . . . . 10  |-  ( k  =  n  ->  ( B ^ k )  =  ( B ^ n
) )
144143oveq2d 6089 . . . . . . . . 9  |-  ( k  =  n  ->  (
1  -  ( B ^ k ) )  =  ( 1  -  ( B ^ n
) ) )
145144breq2d 4216 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  <->  ( 1  -  E )  < 
( 1  -  ( B ^ n ) ) ) )
146 oveq2 6081 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  A
) ^ k )  =  ( ( 1  /  A ) ^
n ) )
147146breq1d 4214 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( 1  /  A ) ^ k
)  <  E  <->  ( (
1  /  A ) ^ n )  < 
E ) )
148145, 147anbi12d 692 . . . . . . 7  |-  ( k  =  n  ->  (
( ( 1  -  E )  <  (
1  -  ( B ^ k ) )  /\  ( ( 1  /  A ) ^
k )  <  E
)  <->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) ) )
149148rspccva 3043 . . . . . 6  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( ( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  ( ( 1  /  A ) ^ k
)  <  E )  /\  n  e.  ( ZZ>=
`  n ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) )
150138, 142, 149syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) )
151106a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  1  e.  CC )
15292, 96jca 519 . . . . . . . . . . 11  |-  ( ph  ->  ( A  e.  CC  /\  A  =/=  0 ) )
153152adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
15449adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
155 expdiv 11422 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 )  /\  n  e.  NN0 )  ->  ( ( 1  /  A ) ^
n )  =  ( ( 1 ^ n
)  /  ( A ^ n ) ) )
156151, 153, 154, 155syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1  /  A ) ^ n )  =  ( ( 1 ^ n )  /  ( A ^ n ) ) )
157139adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
158 1exp 11401 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
159157, 158syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1 ^ n )  =  1 )
160159oveq1d 6088 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1 ^ n )  /  ( A ^
n ) )  =  ( 1  /  ( A ^ n ) ) )
161156, 160eqtrd 2467 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1  /  A ) ^ n )  =  ( 1  /  ( A ^ n ) ) )
162161breq1d 4214 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 1  /  A
) ^ n )  <  E  <->  ( 1  /  ( A ^
n ) )  < 
E ) )
163162adantr 452 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( ( 1  /  A ) ^ n )  < 
E  <->  ( 1  / 
( A ^ n
) )  <  E
) )
164163anbi2d 685 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( ( 1  -  E )  <  ( 1  -  ( B ^ n
) )  /\  (
( 1  /  A
) ^ n )  <  E )  <->  ( (
1  -  E )  <  ( 1  -  ( B ^ n
) )  /\  (
1  /  ( A ^ n ) )  <  E ) ) )
165150, 164mpbid 202 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
166165ex 424 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E )  -> 
( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) ) )
167166reximdva 2810 . 2  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( 1  -  E )  <  (
1  -  ( B ^ k ) )  /\  ( ( 1  /  A ) ^
k )  <  E
)  ->  E. n  e.  NN  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) ) )
168137, 167mpd 15 1  |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    < clt 9112    <_ cle 9113    - cmin 9283   -ucneg 9284    / cdiv 9669   NNcn 9992   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   ^cexp 11374   abscabs 12031    ~~> cli 12270
This theorem is referenced by:  stoweidlem49  27765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fl 11194  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275
  Copyright terms: Public domain W3C validator