MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdi Unicode version

Theorem subdi 9423
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
subdi  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )

Proof of Theorem subdi
StepHypRef Expression
1 simp1 957 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 simp3 959 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
3 subcl 9261 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
433adant1 975 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
51, 2, 4adddid 9068 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( C  +  ( B  -  C ) ) )  =  ( ( A  x.  C )  +  ( A  x.  ( B  -  C )
) ) )
6 pncan3 9269 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
76ancoms 440 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
873adant1 975 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
98oveq2d 6056 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( C  +  ( B  -  C ) ) )  =  ( A  x.  B ) )
105, 9eqtr3d 2438 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  +  ( A  x.  ( B  -  C ) ) )  =  ( A  x.  B ) )
11 mulcl 9030 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
12113adant3 977 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  B )  e.  CC )
13 mulcl 9030 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
14133adant2 976 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  e.  CC )
15 mulcl 9030 . . . . . 6  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC )  ->  ( A  x.  ( B  -  C
) )  e.  CC )
163, 15sylan2 461 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  x.  ( B  -  C
) )  e.  CC )
17163impb 1149 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  e.  CC )
1812, 14, 17subaddd 9385 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  x.  B )  -  ( A  x.  C )
)  =  ( A  x.  ( B  -  C ) )  <->  ( ( A  x.  C )  +  ( A  x.  ( B  -  C
) ) )  =  ( A  x.  B
) ) )
1910, 18mpbird 224 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  -  ( A  x.  C ) )  =  ( A  x.  ( B  -  C
) ) )
2019eqcomd 2409 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721  (class class class)co 6040   CCcc 8944    + caddc 8949    x. cmul 8951    - cmin 9247
This theorem is referenced by:  subdir  9424  subdii  9438  subdid  9445  expubnd  11395  subsq  11443  cos01bnd  12742  odd2np1  12863  phiprmpw  13120  omoe  13141  omeo  13143  pythagtriplem14  13157  plydiveu  20168  quotcan  20179  basellem9  20824  chtublem  20948  bposlem9  21029  ipval2  22156  mulcan1g  25142  ax5seglem1  25771  ax5seglem2  25772  axpaschlem  25783  axcontlem2  25808  axcontlem4  25810  axcontlem7  25813  axcontlem8  25814  bpoly3  26008  pellexlem6  26787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sub 9249
  Copyright terms: Public domain W3C validator