MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdi Unicode version

Theorem subdi 9146
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
subdi  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )

Proof of Theorem subdi
StepHypRef Expression
1 simp1 960 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 simp3 962 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
3 subcl 8984 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
433adant1 978 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
51, 2, 4adddid 8792 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( C  +  ( B  -  C ) ) )  =  ( ( A  x.  C )  +  ( A  x.  ( B  -  C )
) ) )
6 pncan3 8992 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
76ancoms 441 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
873adant1 978 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
98oveq2d 5773 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( C  +  ( B  -  C ) ) )  =  ( A  x.  B ) )
105, 9eqtr3d 2290 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  +  ( A  x.  ( B  -  C ) ) )  =  ( A  x.  B ) )
11 mulcl 8754 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
12113adant3 980 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  B )  e.  CC )
13 mulcl 8754 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
14133adant2 979 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  e.  CC )
15 mulcl 8754 . . . . . 6  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC )  ->  ( A  x.  ( B  -  C
) )  e.  CC )
163, 15sylan2 462 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  x.  ( B  -  C
) )  e.  CC )
17163impb 1152 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  e.  CC )
1812, 14, 17subaddd 9108 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  x.  B )  -  ( A  x.  C )
)  =  ( A  x.  ( B  -  C ) )  <->  ( ( A  x.  C )  +  ( A  x.  ( B  -  C
) ) )  =  ( A  x.  B
) ) )
1910, 18mpbird 225 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  -  ( A  x.  C ) )  =  ( A  x.  ( B  -  C
) ) )
2019eqcomd 2261 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621  (class class class)co 5757   CCcc 8668    + caddc 8673    x. cmul 8675    - cmin 8970
This theorem is referenced by:  subdir  9147  subdii  9161  subdid  9168  expubnd  11093  subsq  11141  cos01bnd  12393  odd2np1  12514  phiprmpw  12771  omoe  12792  omeo  12794  pythagtriplem14  12808  plydiveu  19605  quotcan  19616  basellem9  20253  chtublem  20377  bposlem9  20458  ipval2  21205  mulcan1g  23420  ax5seglem1  23896  ax5seglem2  23897  axpaschlem  23908  axcontlem2  23933  axcontlem4  23935  axcontlem7  23938  axcontlem8  23939  bpoly3  24133  fsumcube  24135  pellexlem6  26251  stoweidlem26  27075
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-ltxr 8805  df-sub 8972
  Copyright terms: Public domain W3C validator