Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Unicode version

Theorem subfacp1lem2a 23713
Description: Lemma for subfacp1 23719. Properties of a bijection on  K augmented with the two-element flip to get a bijection on  K  u.  {
1 ,  M }. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
subfacp1lem1.n  |-  ( ph  ->  N  e.  NN )
subfacp1lem1.m  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
subfacp1lem1.x  |-  M  e. 
_V
subfacp1lem1.k  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
subfacp1lem2.5  |-  F  =  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } )
subfacp1lem2.6  |-  ( ph  ->  G : K -1-1-onto-> K )
Assertion
Ref Expression
subfacp1lem2a  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
Distinct variable groups:    f, n, x, y, A    f, F, x, y    f, N, n, x, y    ph, x, y    D, n    f, K, n, x, y    f, M, x, y    S, n, x, y
Allowed substitution hints:    ph( f, n)    D( x, y, f)    S( f)    F( n)    G( x, y, f, n)    M( n)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4  |-  ( ph  ->  G : K -1-1-onto-> K )
2 1z 10055 . . . . . 6  |-  1  e.  ZZ
3 subfacp1lem1.x . . . . . 6  |-  M  e. 
_V
4 f1oprswap 5517 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  _V )  ->  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )
52, 3, 4mp2an 653 . . . . 5  |-  { <. 1 ,  M >. , 
<. M ,  1 >. } : { 1 ,  M } -1-1-onto-> { 1 ,  M }
65a1i 10 . . . 4  |-  ( ph  ->  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )
7 derang.d . . . . . 6  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
8 subfac.n . . . . . 6  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
9 subfacp1lem.a . . . . . 6  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
10 subfacp1lem1.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
11 subfacp1lem1.m . . . . . 6  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
12 subfacp1lem1.k . . . . . 6  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
137, 8, 9, 10, 11, 3, 12subfacp1lem1 23712 . . . . 5  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
1413simp1d 967 . . . 4  |-  ( ph  ->  ( K  i^i  {
1 ,  M }
)  =  (/) )
15 f1oun 5494 . . . 4  |-  ( ( ( G : K -1-1-onto-> K  /\  { <. 1 ,  M >. ,  <. M ,  1
>. } : { 1 ,  M } -1-1-onto-> { 1 ,  M } )  /\  (
( K  i^i  {
1 ,  M }
)  =  (/)  /\  ( K  i^i  { 1 ,  M } )  =  (/) ) )  ->  ( G  u.  { <. 1 ,  M >. ,  <. M , 
1 >. } ) : ( K  u.  {
1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } ) )
161, 6, 14, 14, 15syl22anc 1183 . . 3  |-  ( ph  ->  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) )
1713simp2d 968 . . . 4  |-  ( ph  ->  ( K  u.  {
1 ,  M }
)  =  ( 1 ... ( N  + 
1 ) ) )
18 subfacp1lem2.5 . . . . . . 7  |-  F  =  ( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } )
19 f1oeq1 5465 . . . . . . 7  |-  ( F  =  ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } )  ->  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
2018, 19ax-mp 8 . . . . . 6  |-  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } ) )
21 f1oeq2 5466 . . . . . 6  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  ( F : ( K  u.  { 1 ,  M }
)
-1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
2220, 21syl5bbr 250 . . . . 5  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  (
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( K  u.  { 1 ,  M } ) ) )
23 f1oeq3 5467 . . . . 5  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( K  u.  {
1 ,  M }
)  <->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2422, 23bitrd 244 . . . 4  |-  ( ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  ->  (
( G  u.  { <. 1 ,  M >. , 
<. M ,  1 >. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2517, 24syl 15 . . 3  |-  ( ph  ->  ( ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } ) : ( K  u.  { 1 ,  M } ) -1-1-onto-> ( K  u.  { 1 ,  M } )  <-> 
F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) ) )
2616, 25mpbid 201 . 2  |-  ( ph  ->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) )
27 f1ofun 5476 . . . . 5  |-  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  Fun  F )
2826, 27syl 15 . . . 4  |-  ( ph  ->  Fun  F )
29 snsspr1 3766 . . . . . 6  |-  { <. 1 ,  M >. } 
C_  { <. 1 ,  M >. ,  <. M , 
1 >. }
30 ssun2 3341 . . . . . . 7  |-  { <. 1 ,  M >. , 
<. M ,  1 >. }  C_  ( G  u.  {
<. 1 ,  M >. ,  <. M ,  1
>. } )
3130, 18sseqtr4i 3213 . . . . . 6  |-  { <. 1 ,  M >. , 
<. M ,  1 >. }  C_  F
3229, 31sstri 3190 . . . . 5  |-  { <. 1 ,  M >. } 
C_  F
33 1ex 8835 . . . . . . 7  |-  1  e.  _V
3433snid 3669 . . . . . 6  |-  1  e.  { 1 }
353dmsnop 5149 . . . . . 6  |-  dom  { <. 1 ,  M >. }  =  { 1 }
3634, 35eleqtrri 2358 . . . . 5  |-  1  e.  dom  { <. 1 ,  M >. }
37 funssfv 5545 . . . . 5  |-  ( ( Fun  F  /\  { <. 1 ,  M >. } 
C_  F  /\  1  e.  dom  { <. 1 ,  M >. } )  -> 
( F `  1
)  =  ( {
<. 1 ,  M >. } `  1 ) )
3832, 36, 37mp3an23 1269 . . . 4  |-  ( Fun 
F  ->  ( F `  1 )  =  ( { <. 1 ,  M >. } `  1
) )
3928, 38syl 15 . . 3  |-  ( ph  ->  ( F `  1
)  =  ( {
<. 1 ,  M >. } `  1 ) )
4033, 3fvsn 5715 . . 3  |-  ( {
<. 1 ,  M >. } `  1 )  =  M
4139, 40syl6eq 2333 . 2  |-  ( ph  ->  ( F `  1
)  =  M )
42 snsspr2 3767 . . . . . 6  |-  { <. M ,  1 >. }  C_  {
<. 1 ,  M >. ,  <. M ,  1
>. }
4342, 31sstri 3190 . . . . 5  |-  { <. M ,  1 >. }  C_  F
443snid 3669 . . . . . 6  |-  M  e. 
{ M }
4533dmsnop 5149 . . . . . 6  |-  dom  { <. M ,  1 >. }  =  { M }
4644, 45eleqtrri 2358 . . . . 5  |-  M  e. 
dom  { <. M ,  1
>. }
47 funssfv 5545 . . . . 5  |-  ( ( Fun  F  /\  { <. M ,  1 >. }  C_  F  /\  M  e.  dom  { <. M , 
1 >. } )  -> 
( F `  M
)  =  ( {
<. M ,  1 >. } `  M )
)
4843, 46, 47mp3an23 1269 . . . 4  |-  ( Fun 
F  ->  ( F `  M )  =  ( { <. M ,  1
>. } `  M ) )
4928, 48syl 15 . . 3  |-  ( ph  ->  ( F `  M
)  =  ( {
<. M ,  1 >. } `  M )
)
503, 33fvsn 5715 . . 3  |-  ( {
<. M ,  1 >. } `  M )  =  1
5149, 50syl6eq 2333 . 2  |-  ( ph  ->  ( F `  M
)  =  1 )
5226, 41, 513jca 1132 1  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   {cab 2271    =/= wne 2448   A.wral 2545   _Vcvv 2790    \ cdif 3151    u. cun 3152    i^i cin 3153    C_ wss 3154   (/)c0 3457   {csn 3642   {cpr 3643   <.cop 3645    e. cmpt 4079   dom cdm 4691   Fun wfun 5251   -1-1-onto->wf1o 5256   ` cfv 5257  (class class class)co 5860   Fincfn 6865   1c1 8740    + caddc 8742    - cmin 9039   NNcn 9748   2c2 9797   NN0cn0 9967   ZZcz 10026   ...cfz 10784   #chash 11339
This theorem is referenced by:  subfacp1lem2b  23714  subfacp1lem3  23715  subfacp1lem4  23716  subfacp1lem5  23717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-n0 9968  df-z 10027  df-uz 10233  df-fz 10785  df-hash 11340
  Copyright terms: Public domain W3C validator