Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval2 Structured version   Unicode version

Theorem subfacval2 24873
Description: A closed-form expression for the subfactorial. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
Assertion
Ref Expression
subfacval2  |-  ( N  e.  NN0  ->  ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
Distinct variable groups:    f, n, x, y, k, N    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f, k)    S( f, k)

Proof of Theorem subfacval2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fveq2 5728 . . . . . 6  |-  ( x  =  0  ->  ( S `  x )  =  ( S ` 
0 ) )
2 derang.d . . . . . . 7  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
3 subfac.n . . . . . . 7  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
42, 3subfac0 24863 . . . . . 6  |-  ( S `
 0 )  =  1
51, 4syl6eq 2484 . . . . 5  |-  ( x  =  0  ->  ( S `  x )  =  1 )
6 fveq2 5728 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
7 fac0 11569 . . . . . . 7  |-  ( ! `
 0 )  =  1
86, 7syl6eq 2484 . . . . . 6  |-  ( x  =  0  ->  ( ! `  x )  =  1 )
9 oveq2 6089 . . . . . . 7  |-  ( x  =  0  ->  (
0 ... x )  =  ( 0 ... 0
) )
109sumeq1d 12495 . . . . . 6  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
118, 10oveq12d 6099 . . . . 5  |-  ( x  =  0  ->  (
( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( 1  x. 
sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
125, 11eqeq12d 2450 . . . 4  |-  ( x  =  0  ->  (
( S `  x
)  =  ( ( ! `  x )  x.  sum_ k  e.  ( 0 ... x ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  1  =  ( 1  x.  sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
13 oveq1 6088 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
14 0p1e1 10093 . . . . . . . 8  |-  ( 0  +  1 )  =  1
1513, 14syl6eq 2484 . . . . . . 7  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
1615fveq2d 5732 . . . . . 6  |-  ( x  =  0  ->  ( S `  ( x  +  1 ) )  =  ( S ` 
1 ) )
172, 3subfac1 24864 . . . . . 6  |-  ( S `
 1 )  =  0
1816, 17syl6eq 2484 . . . . 5  |-  ( x  =  0  ->  ( S `  ( x  +  1 ) )  =  0 )
1915fveq2d 5732 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  ( ! ` 
1 ) )
20 fac1 11570 . . . . . . 7  |-  ( ! `
 1 )  =  1
2119, 20syl6eq 2484 . . . . . 6  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  1 )
2215oveq2d 6097 . . . . . . 7  |-  ( x  =  0  ->  (
0 ... ( x  + 
1 ) )  =  ( 0 ... 1
) )
2322sumeq1d 12495 . . . . . 6  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
2421, 23oveq12d 6099 . . . . 5  |-  ( x  =  0  ->  (
( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( 1  x. 
sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
2518, 24eqeq12d 2450 . . . 4  |-  ( x  =  0  ->  (
( S `  (
x  +  1 ) )  =  ( ( ! `  ( x  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( x  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  0  =  ( 1  x.  sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
2612, 25anbi12d 692 . . 3  |-  ( x  =  0  ->  (
( ( S `  x )  =  ( ( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  /\  ( S `  ( x  +  1
) )  =  ( ( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )  <->  ( 1  =  ( 1  x.  sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  /\  0  =  ( 1  x. 
sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) ) )
27 fveq2 5728 . . . . 5  |-  ( x  =  m  ->  ( S `  x )  =  ( S `  m ) )
28 fveq2 5728 . . . . . 6  |-  ( x  =  m  ->  ( ! `  x )  =  ( ! `  m ) )
29 oveq2 6089 . . . . . . 7  |-  ( x  =  m  ->  (
0 ... x )  =  ( 0 ... m
) )
3029sumeq1d 12495 . . . . . 6  |-  ( x  =  m  ->  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
3128, 30oveq12d 6099 . . . . 5  |-  ( x  =  m  ->  (
( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
3227, 31eqeq12d 2450 . . . 4  |-  ( x  =  m  ->  (
( S `  x
)  =  ( ( ! `  x )  x.  sum_ k  e.  ( 0 ... x ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( S `  m )  =  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
33 oveq1 6088 . . . . . 6  |-  ( x  =  m  ->  (
x  +  1 )  =  ( m  + 
1 ) )
3433fveq2d 5732 . . . . 5  |-  ( x  =  m  ->  ( S `  ( x  +  1 ) )  =  ( S `  ( m  +  1
) ) )
3533fveq2d 5732 . . . . . 6  |-  ( x  =  m  ->  ( ! `  ( x  +  1 ) )  =  ( ! `  ( m  +  1
) ) )
3633oveq2d 6097 . . . . . . 7  |-  ( x  =  m  ->  (
0 ... ( x  + 
1 ) )  =  ( 0 ... (
m  +  1 ) ) )
3736sumeq1d 12495 . . . . . 6  |-  ( x  =  m  ->  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
3835, 37oveq12d 6099 . . . . 5  |-  ( x  =  m  ->  (
( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
3934, 38eqeq12d 2450 . . . 4  |-  ( x  =  m  ->  (
( S `  (
x  +  1 ) )  =  ( ( ! `  ( x  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( x  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( S `  ( m  +  1 ) )  =  ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
4032, 39anbi12d 692 . . 3  |-  ( x  =  m  ->  (
( ( S `  x )  =  ( ( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  /\  ( S `  ( x  +  1
) )  =  ( ( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )  <->  ( ( S `
 m )  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) ) )
41 fveq2 5728 . . . . 5  |-  ( x  =  ( m  + 
1 )  ->  ( S `  x )  =  ( S `  ( m  +  1
) ) )
42 fveq2 5728 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( m  +  1
) ) )
43 oveq2 6089 . . . . . . 7  |-  ( x  =  ( m  + 
1 )  ->  (
0 ... x )  =  ( 0 ... (
m  +  1 ) ) )
4443sumeq1d 12495 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
4542, 44oveq12d 6099 . . . . 5  |-  ( x  =  ( m  + 
1 )  ->  (
( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
4641, 45eqeq12d 2450 . . . 4  |-  ( x  =  ( m  + 
1 )  ->  (
( S `  x
)  =  ( ( ! `  x )  x.  sum_ k  e.  ( 0 ... x ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( S `  ( m  +  1 ) )  =  ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
47 oveq1 6088 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  (
x  +  1 )  =  ( ( m  +  1 )  +  1 ) )
4847fveq2d 5732 . . . . 5  |-  ( x  =  ( m  + 
1 )  ->  ( S `  ( x  +  1 ) )  =  ( S `  ( ( m  + 
1 )  +  1 ) ) )
4947fveq2d 5732 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  ( ! `  ( x  +  1 ) )  =  ( ! `  ( ( m  + 
1 )  +  1 ) ) )
5047oveq2d 6097 . . . . . . 7  |-  ( x  =  ( m  + 
1 )  ->  (
0 ... ( x  + 
1 ) )  =  ( 0 ... (
( m  +  1 )  +  1 ) ) )
5150sumeq1d 12495 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
5249, 51oveq12d 6099 . . . . 5  |-  ( x  =  ( m  + 
1 )  ->  (
( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
5348, 52eqeq12d 2450 . . . 4  |-  ( x  =  ( m  + 
1 )  ->  (
( S `  (
x  +  1 ) )  =  ( ( ! `  ( x  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( x  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( S `  ( ( m  + 
1 )  +  1 ) )  =  ( ( ! `  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
( m  +  1 )  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
5446, 53anbi12d 692 . . 3  |-  ( x  =  ( m  + 
1 )  ->  (
( ( S `  x )  =  ( ( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  /\  ( S `  ( x  +  1
) )  =  ( ( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )  <->  ( ( S `
 ( m  + 
1 ) )  =  ( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  /\  ( S `  ( (
m  +  1 )  +  1 ) )  =  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) ) )
55 fveq2 5728 . . . . 5  |-  ( x  =  N  ->  ( S `  x )  =  ( S `  N ) )
56 fveq2 5728 . . . . . 6  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
57 oveq2 6089 . . . . . . 7  |-  ( x  =  N  ->  (
0 ... x )  =  ( 0 ... N
) )
5857sumeq1d 12495 . . . . . 6  |-  ( x  =  N  ->  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
5956, 58oveq12d 6099 . . . . 5  |-  ( x  =  N  ->  (
( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
6055, 59eqeq12d 2450 . . . 4  |-  ( x  =  N  ->  (
( S `  x
)  =  ( ( ! `  x )  x.  sum_ k  e.  ( 0 ... x ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( S `  N )  =  ( ( ! `  N
)  x.  sum_ k  e.  ( 0 ... N
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
61 oveq1 6088 . . . . . 6  |-  ( x  =  N  ->  (
x  +  1 )  =  ( N  + 
1 ) )
6261fveq2d 5732 . . . . 5  |-  ( x  =  N  ->  ( S `  ( x  +  1 ) )  =  ( S `  ( N  +  1
) ) )
6361fveq2d 5732 . . . . . 6  |-  ( x  =  N  ->  ( ! `  ( x  +  1 ) )  =  ( ! `  ( N  +  1
) ) )
6461oveq2d 6097 . . . . . . 7  |-  ( x  =  N  ->  (
0 ... ( x  + 
1 ) )  =  ( 0 ... ( N  +  1 ) ) )
6564sumeq1d 12495 . . . . . 6  |-  ( x  =  N  ->  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
6663, 65oveq12d 6099 . . . . 5  |-  ( x  =  N  ->  (
( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 ( N  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
6762, 66eqeq12d 2450 . . . 4  |-  ( x  =  N  ->  (
( S `  (
x  +  1 ) )  =  ( ( ! `  ( x  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( x  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( S `  ( N  +  1 ) )  =  ( ( ! `  ( N  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
6860, 67anbi12d 692 . . 3  |-  ( x  =  N  ->  (
( ( S `  x )  =  ( ( ! `  x
)  x.  sum_ k  e.  ( 0 ... x
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  /\  ( S `  ( x  +  1
) )  =  ( ( ! `  (
x  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
x  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )  <->  ( ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  /\  ( S `  ( N  +  1 ) )  =  ( ( ! `
 ( N  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) ) )
69 0z 10293 . . . . . . 7  |-  0  e.  ZZ
70 ax-1cn 9048 . . . . . . 7  |-  1  e.  CC
71 oveq2 6089 . . . . . . . . . . 11  |-  ( k  =  0  ->  ( -u 1 ^ k )  =  ( -u 1 ^ 0 ) )
72 neg1cn 10067 . . . . . . . . . . . 12  |-  -u 1  e.  CC
73 exp0 11386 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
7472, 73ax-mp 8 . . . . . . . . . . 11  |-  ( -u
1 ^ 0 )  =  1
7571, 74syl6eq 2484 . . . . . . . . . 10  |-  ( k  =  0  ->  ( -u 1 ^ k )  =  1 )
76 fveq2 5728 . . . . . . . . . . 11  |-  ( k  =  0  ->  ( ! `  k )  =  ( ! ` 
0 ) )
7776, 7syl6eq 2484 . . . . . . . . . 10  |-  ( k  =  0  ->  ( ! `  k )  =  1 )
7875, 77oveq12d 6099 . . . . . . . . 9  |-  ( k  =  0  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  =  ( 1  / 
1 ) )
7970div1i 9742 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
8078, 79syl6eq 2484 . . . . . . . 8  |-  ( k  =  0  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  =  1 )
8180fsum1 12535 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  1  e.  CC )  -> 
sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  =  1 )
8269, 70, 81mp2an 654 . . . . . 6  |-  sum_ k  e.  ( 0 ... 0
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  1
8382oveq2i 6092 . . . . 5  |-  ( 1  x.  sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( 1  x.  1 )
84 1t1e1 10126 . . . . 5  |-  ( 1  x.  1 )  =  1
8583, 84eqtr2i 2457 . . . 4  |-  1  =  ( 1  x. 
sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
86 nn0uz 10520 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
87 1e0p1 10410 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
88 oveq2 6089 . . . . . . . . . . . 12  |-  ( k  =  1  ->  ( -u 1 ^ k )  =  ( -u 1 ^ 1 ) )
89 exp1 11387 . . . . . . . . . . . . 13  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 1 )  =  -u 1
)
9072, 89ax-mp 8 . . . . . . . . . . . 12  |-  ( -u
1 ^ 1 )  =  -u 1
9188, 90syl6eq 2484 . . . . . . . . . . 11  |-  ( k  =  1  ->  ( -u 1 ^ k )  =  -u 1 )
92 fveq2 5728 . . . . . . . . . . . 12  |-  ( k  =  1  ->  ( ! `  k )  =  ( ! ` 
1 ) )
9392, 20syl6eq 2484 . . . . . . . . . . 11  |-  ( k  =  1  ->  ( ! `  k )  =  1 )
9491, 93oveq12d 6099 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  =  ( -u 1  /  1 ) )
9572div1i 9742 . . . . . . . . . 10  |-  ( -u
1  /  1 )  =  -u 1
9694, 95syl6eq 2484 . . . . . . . . 9  |-  ( k  =  1  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  =  -u 1 )
97 1re 9090 . . . . . . . . . . . . . 14  |-  1  e.  RR
9897renegcli 9362 . . . . . . . . . . . . 13  |-  -u 1  e.  RR
99 reexpcl 11398 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  RR  /\  k  e.  NN0 )  ->  ( -u 1 ^ k )  e.  RR )
10098, 99mpan 652 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( -u
1 ^ k )  e.  RR )
101 faccl 11576 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
102100, 101nndivred 10048 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  /  ( ! `
 k ) )  e.  RR )
103102recnd 9114 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  /  ( ! `
 k ) )  e.  CC )
104103adantl 453 . . . . . . . . 9  |-  ( (  T.  /\  k  e. 
NN0 )  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  e.  CC )
105 0nn0 10236 . . . . . . . . . . 11  |-  0  e.  NN0
106105, 82pm3.2i 442 . . . . . . . . . 10  |-  ( 0  e.  NN0  /\  sum_ k  e.  ( 0 ... 0
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  1 )
107106a1i 11 . . . . . . . . 9  |-  (  T. 
->  ( 0  e.  NN0  /\ 
sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  =  1 ) )
10870negidi 9369 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
109108a1i 11 . . . . . . . . 9  |-  (  T. 
->  ( 1  +  -u
1 )  =  0 )
11086, 87, 96, 104, 107, 109fsump1i 12553 . . . . . . . 8  |-  (  T. 
->  ( 1  e.  NN0  /\ 
sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  =  0 ) )
111110trud 1332 . . . . . . 7  |-  ( 1  e.  NN0  /\  sum_ k  e.  ( 0 ... 1
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  0 )
112111simpri 449 . . . . . 6  |-  sum_ k  e.  ( 0 ... 1
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  0
113112oveq2i 6092 . . . . 5  |-  ( 1  x.  sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( 1  x.  0 )
11470mul01i 9256 . . . . 5  |-  ( 1  x.  0 )  =  0
115113, 114eqtr2i 2457 . . . 4  |-  0  =  ( 1  x. 
sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
11685, 115pm3.2i 442 . . 3  |-  ( 1  =  ( 1  x. 
sum_ k  e.  ( 0 ... 0 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  0  =  ( 1  x.  sum_ k  e.  ( 0 ... 1 ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
117 simpr 448 . . . . 5  |-  ( ( ( S `  m
)  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( S `  ( m  +  1
) )  =  ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )
118117a1i 11 . . . 4  |-  ( m  e.  NN0  ->  ( ( ( S `  m
)  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( S `  ( m  +  1
) )  =  ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
119 oveq12 6090 . . . . . . 7  |-  ( ( ( S `  (
m  +  1 ) )  =  ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  m )  =  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( ( S `
 ( m  + 
1 ) )  +  ( S `  m
) )  =  ( ( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
120119ancoms 440 . . . . . 6  |-  ( ( ( S `  m
)  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( ( S `
 ( m  + 
1 ) )  +  ( S `  m
) )  =  ( ( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
121120oveq2d 6097 . . . . 5  |-  ( ( ( S `  m
)  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( ( m  +  1 )  x.  ( ( S `  ( m  +  1
) )  +  ( S `  m ) ) )  =  ( ( m  +  1 )  x.  ( ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) ) )
122 nn0p1nn 10259 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
1232, 3subfacp1 24872 . . . . . . . 8  |-  ( ( m  +  1 )  e.  NN  ->  ( S `  ( (
m  +  1 )  +  1 ) )  =  ( ( m  +  1 )  x.  ( ( S `  ( m  +  1
) )  +  ( S `  ( ( m  +  1 )  -  1 ) ) ) ) )
124122, 123syl 16 . . . . . . 7  |-  ( m  e.  NN0  ->  ( S `
 ( ( m  +  1 )  +  1 ) )  =  ( ( m  + 
1 )  x.  (
( S `  (
m  +  1 ) )  +  ( S `
 ( ( m  +  1 )  - 
1 ) ) ) ) )
125 nn0cn 10231 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  m  e.  CC )
126 pncan 9311 . . . . . . . . . . 11  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( ( m  + 
1 )  -  1 )  =  m )
127125, 70, 126sylancl 644 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  -  1 )  =  m )
128127fveq2d 5732 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( S `
 ( ( m  +  1 )  - 
1 ) )  =  ( S `  m
) )
129128oveq2d 6097 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( S `  ( m  +  1 ) )  +  ( S `  ( ( m  + 
1 )  -  1 ) ) )  =  ( ( S `  ( m  +  1
) )  +  ( S `  m ) ) )
130129oveq2d 6097 . . . . . . 7  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  x.  ( ( S `
 ( m  + 
1 ) )  +  ( S `  (
( m  +  1 )  -  1 ) ) ) )  =  ( ( m  + 
1 )  x.  (
( S `  (
m  +  1 ) )  +  ( S `
 m ) ) ) )
131124, 130eqtrd 2468 . . . . . 6  |-  ( m  e.  NN0  ->  ( S `
 ( ( m  +  1 )  +  1 ) )  =  ( ( m  + 
1 )  x.  (
( S `  (
m  +  1 ) )  +  ( S `
 m ) ) ) )
132 peano2nn0 10260 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
133 peano2nn0 10260 . . . . . . . . . . . 12  |-  ( ( m  +  1 )  e.  NN0  ->  ( ( m  +  1 )  +  1 )  e. 
NN0 )
134132, 133syl 16 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  e. 
NN0 )
135 faccl 11576 . . . . . . . . . . 11  |-  ( ( ( m  +  1 )  +  1 )  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  e.  NN )
136134, 135syl 16 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  e.  NN )
137136nncnd 10016 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  e.  CC )
138 fzfid 11312 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( 0 ... ( m  + 
1 ) )  e. 
Fin )
139 elfznn0 11083 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( m  +  1 ) )  ->  k  e.  NN0 )
140139adantl 453 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  k  e.  ( 0 ... ( m  + 
1 ) ) )  ->  k  e.  NN0 )
141140, 103syl 16 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  ( 0 ... ( m  + 
1 ) ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
142138, 141fsumcl 12527 . . . . . . . . 9  |-  ( m  e.  NN0  ->  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
143 expcl 11399 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  ( ( m  + 
1 )  +  1 )  e.  NN0 )  ->  ( -u 1 ^ ( ( m  + 
1 )  +  1 ) )  e.  CC )
14472, 134, 143sylancr 645 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( -u
1 ^ ( ( m  +  1 )  +  1 ) )  e.  CC )
145136nnne0d 10044 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  =/=  0 )
146144, 137, 145divcld 9790 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( (
-u 1 ^ (
( m  +  1 )  +  1 ) )  /  ( ! `
 ( ( m  +  1 )  +  1 ) ) )  e.  CC )
147137, 142, 146adddid 9112 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  ( sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  +  ( ( -u 1 ^ ( ( m  +  1 )  +  1 ) )  / 
( ! `  (
( m  +  1 )  +  1 ) ) ) ) )  =  ( ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  ( ( m  + 
1 )  +  1 ) )  x.  (
( -u 1 ^ (
( m  +  1 )  +  1 ) )  /  ( ! `
 ( ( m  +  1 )  +  1 ) ) ) ) ) )
148 id 20 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  m  e. 
NN0 )
149148, 86syl6eleq 2526 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  0 )
)
150 oveq2 6089 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  ( -u 1 ^ k )  =  ( -u 1 ^ ( m  + 
1 ) ) )
151 fveq2 5728 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  ( ! `  k )  =  ( ! `  ( m  +  1
) ) )
152150, 151oveq12d 6099 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  /  ( ! `  ( m  +  1
) ) ) )
153149, 141, 152fsump1 12540 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  ( sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  ( ( -u 1 ^ ( m  +  1 ) )  /  ( ! `  ( m  +  1 ) ) ) ) )
154153oveq2d 6097 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ! `  ( ( m  + 
1 )  +  1 ) )  x.  ( sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  ( (
-u 1 ^ (
m  +  1 ) )  /  ( ! `
 ( m  + 
1 ) ) ) ) ) )
155 fzfid 11312 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( 0 ... m )  e. 
Fin )
156 elfznn0 11083 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... m )  ->  k  e.  NN0 )
157156adantl 453 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  k  e.  ( 0 ... m ) )  ->  k  e.  NN0 )
158157, 103syl 16 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  k  e.  ( 0 ... m ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
159155, 158fsumcl 12527 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
160 expcl 11399 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  ( m  +  1 )  e.  NN0 )  ->  ( -u 1 ^ ( m  +  1 ) )  e.  CC )
16172, 132, 160sylancr 645 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( -u
1 ^ ( m  +  1 ) )  e.  CC )
162 faccl 11576 . . . . . . . . . . . . . 14  |-  ( ( m  +  1 )  e.  NN0  ->  ( ! `
 ( m  + 
1 ) )  e.  NN )
163132, 162syl 16 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ! `
 ( m  + 
1 ) )  e.  NN )
164163nncnd 10016 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( ! `
 ( m  + 
1 ) )  e.  CC )
165163nnne0d 10044 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( ! `
 ( m  + 
1 ) )  =/=  0 )
166161, 164, 165divcld 9790 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( (
-u 1 ^ (
m  +  1 ) )  /  ( ! `
 ( m  + 
1 ) ) )  e.  CC )
167137, 159, 166adddid 9112 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  ( sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  +  ( ( -u 1 ^ ( m  + 
1 ) )  / 
( ! `  (
m  +  1 ) ) ) ) )  =  ( ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  ( ( m  + 
1 )  +  1 ) )  x.  (
( -u 1 ^ (
m  +  1 ) )  /  ( ! `
 ( m  + 
1 ) ) ) ) ) )
168 facp1 11571 . . . . . . . . . . . . . 14  |-  ( ( m  +  1 )  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  =  ( ( ! `  ( m  +  1
) )  x.  (
( m  +  1 )  +  1 ) ) )
169132, 168syl 16 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  =  ( ( ! `  ( m  +  1
) )  x.  (
( m  +  1 )  +  1 ) ) )
170 facp1 11571 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  ( ! `
 ( m  + 
1 ) )  =  ( ( ! `  m )  x.  (
m  +  1 ) ) )
171 faccl 11576 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  ( ! `
 m )  e.  NN )
172171nncnd 10016 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( ! `
 m )  e.  CC )
173122nncnd 10016 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  CC )
174172, 173mulcomd 9109 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  ( m  + 
1 ) )  =  ( ( m  + 
1 )  x.  ( ! `  m )
) )
175170, 174eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ! `
 ( m  + 
1 ) )  =  ( ( m  + 
1 )  x.  ( ! `  m )
) )
176175oveq1d 6096 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( ! `  ( m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) )  =  ( ( ( m  +  1 )  x.  ( ! `  m
) )  x.  (
( m  +  1 )  +  1 ) ) )
177134nn0cnd 10276 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  e.  CC )
178173, 172, 177mulassd 9111 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( ( m  +  1 )  x.  ( ! `
 m ) )  x.  ( ( m  +  1 )  +  1 ) )  =  ( ( m  + 
1 )  x.  (
( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) ) ) )
179169, 176, 1783eqtrd 2472 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( ! `
 ( ( m  +  1 )  +  1 ) )  =  ( ( m  + 
1 )  x.  (
( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) ) ) )
180179oveq1d 6096 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
181137, 161, 164, 165div12d 9826 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  ( ( -u
1 ^ ( m  +  1 ) )  /  ( ! `  ( m  +  1
) ) ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  x.  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  / 
( ! `  (
m  +  1 ) ) ) ) )
182169oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  /  ( ! `  ( m  +  1
) ) )  =  ( ( ( ! `
 ( m  + 
1 ) )  x.  ( ( m  + 
1 )  +  1 ) )  /  ( ! `  ( m  +  1 ) ) ) )
183177, 164, 165divcan3d 9795 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) )  /  ( ! `  ( m  +  1
) ) )  =  ( ( m  + 
1 )  +  1 ) )
184182, 183eqtrd 2468 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  /  ( ! `  ( m  +  1
) ) )  =  ( ( m  + 
1 )  +  1 ) )
185184oveq2d 6097 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( (
-u 1 ^ (
m  +  1 ) )  x.  ( ( ! `  ( ( m  +  1 )  +  1 ) )  /  ( ! `  ( m  +  1
) ) ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) ) )
186181, 185eqtrd 2468 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  ( ( -u
1 ^ ( m  +  1 ) )  /  ( ! `  ( m  +  1
) ) ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) ) )
187180, 186oveq12d 6099 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  x.  ( ( -u 1 ^ ( m  + 
1 ) )  / 
( ! `  (
m  +  1 ) ) ) ) )  =  ( ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( -u 1 ^ ( m  + 
1 ) )  x.  ( ( m  + 
1 )  +  1 ) ) ) )
188154, 167, 1873eqtrd 2472 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ( ( m  +  1 )  x.  ( ( ! `
 m )  x.  ( ( m  + 
1 )  +  1 ) ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( -u 1 ^ ( m  + 
1 ) )  x.  ( ( m  + 
1 )  +  1 ) ) ) )
189144, 137, 145divcan2d 9792 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  ( ( -u
1 ^ ( ( m  +  1 )  +  1 ) )  /  ( ! `  ( ( m  + 
1 )  +  1 ) ) ) )  =  ( -u 1 ^ ( ( m  +  1 )  +  1 ) ) )
190188, 189oveq12d 6099 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  x.  ( ( -u 1 ^ ( ( m  +  1 )  +  1 ) )  / 
( ! `  (
( m  +  1 )  +  1 ) ) ) ) )  =  ( ( ( ( ( m  + 
1 )  x.  (
( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( -u
1 ^ ( m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) ) )  +  ( -u 1 ^ ( ( m  +  1 )  +  1 ) ) ) )
191172, 177mulcld 9108 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) )  e.  CC )
192173, 191, 159mulassd 9111 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( m  + 
1 )  x.  (
( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
19372a1i 11 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  -u 1  e.  CC )
194161, 177, 193adddid 9112 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( (
-u 1 ^ (
m  +  1 ) )  x.  ( ( ( m  +  1 )  +  1 )  +  -u 1 ) )  =  ( ( (
-u 1 ^ (
m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) )  +  ( ( -u
1 ^ ( m  +  1 ) )  x.  -u 1 ) ) )
195 negsub 9349 . . . . . . . . . . . . . . 15  |-  ( ( ( ( m  + 
1 )  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( m  +  1 )  +  1 )  +  -u
1 )  =  ( ( ( m  + 
1 )  +  1 )  -  1 ) )
196177, 70, 195sylancl 644 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( ( m  +  1 )  +  1 )  +  -u 1 )  =  ( ( ( m  +  1 )  +  1 )  -  1 ) )
197 pncan 9311 . . . . . . . . . . . . . . 15  |-  ( ( ( m  +  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( m  +  1 )  +  1 )  -  1 )  =  ( m  +  1 ) )
198173, 70, 197sylancl 644 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( ( m  +  1 )  +  1 )  -  1 )  =  ( m  +  1 ) )
199196, 198eqtrd 2468 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( ( m  +  1 )  +  1 )  +  -u 1 )  =  ( m  +  1 ) )
200199oveq2d 6097 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( (
-u 1 ^ (
m  +  1 ) )  x.  ( ( ( m  +  1 )  +  1 )  +  -u 1 ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  x.  ( m  + 
1 ) ) )
201194, 200eqtr3d 2470 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ( -u 1 ^ ( m  +  1 ) )  x.  (
( m  +  1 )  +  1 ) )  +  ( (
-u 1 ^ (
m  +  1 ) )  x.  -u 1
) )  =  ( ( -u 1 ^ ( m  +  1 ) )  x.  (
m  +  1 ) ) )
202 expp1 11388 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  ( m  +  1 )  e.  NN0 )  ->  ( -u 1 ^ ( ( m  + 
1 )  +  1 ) )  =  ( ( -u 1 ^ ( m  +  1 ) )  x.  -u 1
) )
20372, 132, 202sylancr 645 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( -u
1 ^ ( ( m  +  1 )  +  1 ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  x.  -u 1 ) )
204203oveq2d 6097 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ( -u 1 ^ ( m  +  1 ) )  x.  (
( m  +  1 )  +  1 ) )  +  ( -u
1 ^ ( ( m  +  1 )  +  1 ) ) )  =  ( ( ( -u 1 ^ ( m  +  1 ) )  x.  (
( m  +  1 )  +  1 ) )  +  ( (
-u 1 ^ (
m  +  1 ) )  x.  -u 1
) ) )
205173, 161mulcomd 9109 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  x.  ( -u 1 ^ ( m  + 
1 ) ) )  =  ( ( -u
1 ^ ( m  +  1 ) )  x.  ( m  + 
1 ) ) )
206201, 204, 2053eqtr4d 2478 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ( -u 1 ^ ( m  +  1 ) )  x.  (
( m  +  1 )  +  1 ) )  +  ( -u
1 ^ ( ( m  +  1 )  +  1 ) ) )  =  ( ( m  +  1 )  x.  ( -u 1 ^ ( m  + 
1 ) ) ) )
207192, 206oveq12d 6099 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ( ( m  + 
1 )  x.  (
( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( (
-u 1 ^ (
m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) )  +  ( -u 1 ^ ( ( m  +  1 )  +  1 ) ) ) )  =  ( ( ( m  +  1 )  x.  ( ( ( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  +  ( ( m  +  1 )  x.  ( -u 1 ^ ( m  +  1 ) ) ) ) )
208173, 191mulcld 9108 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  x.  ( ( ! `
 m )  x.  ( ( m  + 
1 )  +  1 ) ) )  e.  CC )
209208, 159mulcld 9108 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
210161, 177mulcld 9108 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( (
-u 1 ^ (
m  +  1 ) )  x.  ( ( m  +  1 )  +  1 ) )  e.  CC )
211209, 210, 144addassd 9110 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( -u 1 ^ ( m  +  1 ) )  x.  (
( m  +  1 )  +  1 ) ) )  +  (
-u 1 ^ (
( m  +  1 )  +  1 ) ) )  =  ( ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( ( -u 1 ^ ( m  + 
1 ) )  x.  ( ( m  + 
1 )  +  1 ) )  +  (
-u 1 ^ (
( m  +  1 )  +  1 ) ) ) ) )
212191, 159mulcld 9108 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
213173, 212, 161adddid 9112 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  x.  ( ( ( ( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( -u 1 ^ ( m  +  1 ) ) ) )  =  ( ( ( m  +  1 )  x.  ( ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  +  ( ( m  +  1 )  x.  ( -u 1 ^ ( m  +  1 ) ) ) ) )
214207, 211, 2133eqtr4d 2478 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( ( ( ( m  +  1 )  x.  ( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( -u 1 ^ ( m  +  1 ) )  x.  (
( m  +  1 )  +  1 ) ) )  +  (
-u 1 ^ (
( m  +  1 )  +  1 ) ) )  =  ( ( m  +  1 )  x.  ( ( ( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( -u 1 ^ ( m  + 
1 ) ) ) ) )
215147, 190, 2143eqtrd 2472 . . . . . . 7  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  ( sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  +  ( ( -u 1 ^ ( ( m  +  1 )  +  1 ) )  / 
( ! `  (
( m  +  1 )  +  1 ) ) ) ) )  =  ( ( m  +  1 )  x.  ( ( ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( -u 1 ^ ( m  +  1 ) ) ) ) )
216132, 86syl6eleq 2526 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  ( ZZ>= `  0 )
)
217 elfznn0 11083 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( ( m  + 
1 )  +  1 ) )  ->  k  e.  NN0 )
218217adantl 453 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) )  ->  k  e.  NN0 )
219218, 103syl 16 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
220 oveq2 6089 . . . . . . . . . 10  |-  ( k  =  ( ( m  +  1 )  +  1 )  ->  ( -u 1 ^ k )  =  ( -u 1 ^ ( ( m  +  1 )  +  1 ) ) )
221 fveq2 5728 . . . . . . . . . 10  |-  ( k  =  ( ( m  +  1 )  +  1 )  ->  ( ! `  k )  =  ( ! `  ( ( m  + 
1 )  +  1 ) ) )
222220, 221oveq12d 6099 . . . . . . . . 9  |-  ( k  =  ( ( m  +  1 )  +  1 )  ->  (
( -u 1 ^ k
)  /  ( ! `
 k ) )  =  ( ( -u
1 ^ ( ( m  +  1 )  +  1 ) )  /  ( ! `  ( ( m  + 
1 )  +  1 ) ) ) )
223216, 219, 222fsump1 12540 . . . . . . . 8  |-  ( m  e.  NN0  ->  sum_ k  e.  ( 0 ... (
( m  +  1 )  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  ( sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  ( ( -u 1 ^ ( ( m  + 
1 )  +  1 ) )  /  ( ! `  ( (
m  +  1 )  +  1 ) ) ) ) )
224223oveq2d 6097 . . . . . . 7  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ! `  ( ( m  + 
1 )  +  1 ) )  x.  ( sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  ( (
-u 1 ^ (
( m  +  1 )  +  1 ) )  /  ( ! `
 ( ( m  +  1 )  +  1 ) ) ) ) ) )
225164, 159mulcld 9108 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
226172, 159mulcld 9108 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
227225, 161, 226add32d 9288 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  (
-u 1 ^ (
m  +  1 ) ) )  +  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )  =  ( ( ( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) )  +  ( -u
1 ^ ( m  +  1 ) ) ) )
228153oveq2d 6097 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ! `  ( m  +  1
) )  x.  ( sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  ( (
-u 1 ^ (
m  +  1 ) )  /  ( ! `
 ( m  + 
1 ) ) ) ) ) )
229164, 159, 166adddid 9112 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ! `  ( m  +  1 ) )  x.  ( sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) )  +  ( ( -u 1 ^ ( m  + 
1 ) )  / 
( ! `  (
m  +  1 ) ) ) ) )  =  ( ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  ( m  +  1
) )  x.  (
( -u 1 ^ (
m  +  1 ) )  /  ( ! `
 ( m  + 
1 ) ) ) ) ) )
230161, 164, 165divcan2d 9792 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( ( ! `  ( m  +  1 ) )  x.  ( ( -u
1 ^ ( m  +  1 ) )  /  ( ! `  ( m  +  1
) ) ) )  =  ( -u 1 ^ ( m  + 
1 ) ) )
231230oveq2d 6097 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 ( m  + 
1 ) )  x.  ( ( -u 1 ^ ( m  + 
1 ) )  / 
( ! `  (
m  +  1 ) ) ) ) )  =  ( ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( -u 1 ^ ( m  +  1 ) ) ) )
232228, 229, 2313eqtrd 2472 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( -u 1 ^ ( m  +  1 ) ) ) )
233232oveq1d 6096 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  =  ( ( ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( -u 1 ^ ( m  + 
1 ) ) )  +  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) )
23470a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  1  e.  CC )
235172, 173, 234adddid 9112 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) )  =  ( ( ( ! `
 m )  x.  ( m  +  1 ) )  +  ( ( ! `  m
)  x.  1 ) ) )
236170eqcomd 2441 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  ( m  + 
1 ) )  =  ( ! `  (
m  +  1 ) ) )
237172mulid1d 9105 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  1 )  =  ( ! `  m
) )
238236, 237oveq12d 6099 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( ( ! `  m
)  x.  ( m  +  1 ) )  +  ( ( ! `
 m )  x.  1 ) )  =  ( ( ! `  ( m  +  1
) )  +  ( ! `  m ) ) )
239235, 238eqtrd 2468 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) )  =  ( ( ! `  ( m  +  1
) )  +  ( ! `  m ) ) )
240239oveq1d 6096 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ( ! `
 ( m  + 
1 ) )  +  ( ! `  m
) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
241164, 172, 159adddird 9113 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
m  +  1 ) )  +  ( ! `
 m ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
242240, 241eqtrd 2468 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  ( ( ( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
243242oveq1d 6096 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ( ( ( ! `  m )  x.  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( -u 1 ^ ( m  + 
1 ) ) )  =  ( ( ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  +  ( -u 1 ^ ( m  + 
1 ) ) ) )
244227, 233, 2433eqtr4d 2478 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( ( ! `  (
m  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
m  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  +  ( ( ! `
 m )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  =  ( ( ( ( ! `  m
)  x.  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( -u 1 ^ ( m  +  1 ) ) ) )
245244oveq2d 6097 . . . . . . 7  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  x.  ( ( ( ! `  ( m  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )  =  ( ( m  +  1 )  x.  ( ( ( ( ! `  m )  x.  ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( -u 1 ^ ( m  +  1 ) ) ) ) )
246215, 224, 2453eqtr4d 2478 . . . . . 6  |-  ( m  e.  NN0  ->  ( ( ! `  ( ( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  =  ( ( m  + 
1 )  x.  (
( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) ) )
247131, 246eqeq12d 2450 . . . . 5  |-  ( m  e.  NN0  ->  ( ( S `  ( ( m  +  1 )  +  1 ) )  =  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  <->  ( (
m  +  1 )  x.  ( ( S `
 ( m  + 
1 ) )  +  ( S `  m
) ) )  =  ( ( m  + 
1 )  x.  (
( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  +  ( ( ! `  m
)  x.  sum_ k  e.  ( 0 ... m
) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) ) ) )
248121, 247syl5ibr 213 . . . 4  |-  ( m  e.  NN0  ->  ( ( ( S `  m
)  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( S `  ( ( m  + 
1 )  +  1 ) )  =  ( ( ! `  (
( m  +  1 )  +  1 ) )  x.  sum_ k  e.  ( 0 ... (
( m  +  1 )  +  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) ) ) )
249118, 248jcad 520 . . 3  |-  ( m  e.  NN0  ->  ( ( ( S `  m
)  =  ( ( ! `  m )  x.  sum_ k  e.  ( 0 ... m ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( m  +  1 ) )  =  ( ( ! `
 ( m  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( m  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  ->  ( ( S `
 ( m  + 
1 ) )  =  ( ( ! `  ( m  +  1
) )  x.  sum_ k  e.  ( 0 ... ( m  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  /\  ( S `  ( (
m  +  1 )  +  1 ) )  =  ( ( ! `
 ( ( m  +  1 )  +  1 ) )  x. 
sum_ k  e.  ( 0 ... ( ( m  +  1 )  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) ) )
25026, 40, 54, 68, 116, 249nn0ind 10366 . 2  |-  ( N  e.  NN0  ->  ( ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  /\  ( S `  ( N  +  1 ) )  =  ( ( ! `
 ( N  + 
1 ) )  x. 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) ) )
251250simpld 446 1  |-  ( N  e.  NN0  ->  ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   A.wral 2705    e. cmpt 4266   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    - cmin 9291   -ucneg 9292    / cdiv 9677   NNcn 10000   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   ...cfz 11043   ^cexp 11382   !cfa 11566   #chash 11618   sum_csu 12479
This theorem is referenced by:  subfaclim  24874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-fac 11567  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480
  Copyright terms: Public domain W3C validator