MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucxpdom Unicode version

Theorem sucxpdom 7068
Description: Cross product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucxpdom  |-  ( 1o 
~<  A  ->  suc  A  ~<_  ( A  X.  A
) )

Proof of Theorem sucxpdom
StepHypRef Expression
1 df-suc 4398 . 2  |-  suc  A  =  ( A  u.  { A } )
2 relsdom 6866 . . . . . . . . 9  |-  Rel  ~<
32brrelex2i 4730 . . . . . . . 8  |-  ( 1o 
~<  A  ->  A  e. 
_V )
4 1on 6482 . . . . . . . 8  |-  1o  e.  On
5 xpsneng 6943 . . . . . . . 8  |-  ( ( A  e.  _V  /\  1o  e.  On )  -> 
( A  X.  { 1o } )  ~~  A
)
63, 4, 5sylancl 645 . . . . . . 7  |-  ( 1o 
~<  A  ->  ( A  X.  { 1o }
)  ~~  A )
7 ensym 6906 . . . . . . 7  |-  ( ( A  X.  { 1o } )  ~~  A  ->  A  ~~  ( A  X.  { 1o }
) )
86, 7syl 17 . . . . . 6  |-  ( 1o 
~<  A  ->  A  ~~  ( A  X.  { 1o } ) )
9 endom 6884 . . . . . 6  |-  ( A 
~~  ( A  X.  { 1o } )  ->  A  ~<_  ( A  X.  { 1o } ) )
108, 9syl 17 . . . . 5  |-  ( 1o 
~<  A  ->  A  ~<_  ( A  X.  { 1o } ) )
11 ensn1g 6922 . . . . . . . . 9  |-  ( A  e.  _V  ->  { A }  ~~  1o )
123, 11syl 17 . . . . . . . 8  |-  ( 1o 
~<  A  ->  { A }  ~~  1o )
13 ensdomtr 6993 . . . . . . . 8  |-  ( ( { A }  ~~  1o  /\  1o  ~<  A )  ->  { A }  ~<  A )
1412, 13mpancom 652 . . . . . . 7  |-  ( 1o 
~<  A  ->  { A }  ~<  A )
15 0ex 4152 . . . . . . . . 9  |-  (/)  e.  _V
16 xpsneng 6943 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
173, 15, 16sylancl 645 . . . . . . . 8  |-  ( 1o 
~<  A  ->  ( A  X.  { (/) } ) 
~~  A )
18 ensym 6906 . . . . . . . 8  |-  ( ( A  X.  { (/) } )  ~~  A  ->  A  ~~  ( A  X.  { (/) } ) )
1917, 18syl 17 . . . . . . 7  |-  ( 1o 
~<  A  ->  A  ~~  ( A  X.  { (/) } ) )
20 sdomentr 6991 . . . . . . 7  |-  ( ( { A }  ~<  A  /\  A  ~~  ( A  X.  { (/) } ) )  ->  { A }  ~<  ( A  X.  { (/) } ) )
2114, 19, 20syl2anc 644 . . . . . 6  |-  ( 1o 
~<  A  ->  { A }  ~<  ( A  X.  { (/) } ) )
22 sdomdom 6885 . . . . . 6  |-  ( { A }  ~<  ( A  X.  { (/) } )  ->  { A }  ~<_  ( A  X.  { (/) } ) )
2321, 22syl 17 . . . . 5  |-  ( 1o 
~<  A  ->  { A }  ~<_  ( A  X.  { (/) } ) )
24 1n0 6490 . . . . . 6  |-  1o  =/=  (/)
25 xpsndisj 5103 . . . . . 6  |-  ( 1o  =/=  (/)  ->  ( ( A  X.  { 1o }
)  i^i  ( A  X.  { (/) } ) )  =  (/) )
2624, 25mp1i 13 . . . . 5  |-  ( 1o 
~<  A  ->  ( ( A  X.  { 1o } )  i^i  ( A  X.  { (/) } ) )  =  (/) )
27 undom 6946 . . . . 5  |-  ( ( ( A  ~<_  ( A  X.  { 1o }
)  /\  { A }  ~<_  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o }
)  i^i  ( A  X.  { (/) } ) )  =  (/) )  ->  ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) ) )
2810, 23, 26, 27syl21anc 1183 . . . 4  |-  ( 1o 
~<  A  ->  ( A  u.  { A }
)  ~<_  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) ) )
29 sdomentr 6991 . . . . . 6  |-  ( ( 1o  ~<  A  /\  A  ~~  ( A  X.  { 1o } ) )  ->  1o  ~<  ( A  X.  { 1o }
) )
308, 29mpdan 651 . . . . 5  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { 1o } ) )
31 sdomentr 6991 . . . . . 6  |-  ( ( 1o  ~<  A  /\  A  ~~  ( A  X.  { (/) } ) )  ->  1o  ~<  ( A  X.  { (/) } ) )
3219, 31mpdan 651 . . . . 5  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { (/) } ) )
33 unxpdom 7066 . . . . 5  |-  ( ( 1o  ~<  ( A  X.  { 1o } )  /\  1o  ~<  ( A  X.  { (/) } ) )  ->  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
3430, 32, 33syl2anc 644 . . . 4  |-  ( 1o 
~<  A  ->  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
35 domtr 6910 . . . 4  |-  ( ( ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )  ->  ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) ) )
3628, 34, 35syl2anc 644 . . 3  |-  ( 1o 
~<  A  ->  ( A  u.  { A }
)  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
37 xpen 7020 . . . 4  |-  ( ( ( A  X.  { 1o } )  ~~  A  /\  ( A  X.  { (/)
} )  ~~  A
)  ->  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )
386, 17, 37syl2anc 644 . . 3  |-  ( 1o 
~<  A  ->  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )
39 domentr 6916 . . 3  |-  ( ( ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )  ->  ( A  u.  { A } )  ~<_  ( A  X.  A ) )
4036, 38, 39syl2anc 644 . 2  |-  ( 1o 
~<  A  ->  ( A  u.  { A }
)  ~<_  ( A  X.  A ) )
411, 40syl5eqbr 4058 1  |-  ( 1o 
~<  A  ->  suc  A  ~<_  ( A  X.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1624    e. wcel 1685    =/= wne 2448   _Vcvv 2790    u. cun 3152    i^i cin 3153   (/)c0 3457   {csn 3642   class class class wbr 4025   Oncon0 4392   suc csuc 4394    X. cxp 4687   1oc1o 6468    ~~ cen 6856    ~<_ cdom 6857    ~< csdm 6858
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-1st 6084  df-2nd 6085  df-1o 6475  df-2o 6476  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862
  Copyright terms: Public domain W3C validator