HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Unicode version

Theorem sumdmdii 23906
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1  |-  A  e. 
CH
sumdmdi.2  |-  B  e. 
CH
Assertion
Ref Expression
sumdmdii  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  A  MH*  B )

Proof of Theorem sumdmdii
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 3528 . . . . . . 7  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  (
x  i^i  ( A  +H  B ) )  =  ( x  i^i  ( A  vH  B ) ) )
21adantr 452 . . . . . 6  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  +H  B
) )  =  ( x  i^i  ( A  vH  B ) ) )
3 elin 3522 . . . . . . . . 9  |-  ( y  e.  ( x  i^i  ( A  +H  B
) )  <->  ( y  e.  x  /\  y  e.  ( A  +H  B
) ) )
4 sumdmdi.1 . . . . . . . . . . . 12  |-  A  e. 
CH
5 sumdmdi.2 . . . . . . . . . . . 12  |-  B  e. 
CH
64, 5chseli 22949 . . . . . . . . . . 11  |-  ( y  e.  ( A  +H  B )  <->  E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w
) )
7 ssel2 3335 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  C_  x  /\  w  e.  B )  ->  w  e.  x )
8 chsh 22715 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  CH  ->  x  e.  SH )
9 shsubcl 22711 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  SH  /\  y  e.  x  /\  w  e.  x )  ->  ( y  -h  w
)  e.  x )
1093exp 1152 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  SH  ->  (
y  e.  x  -> 
( w  e.  x  ->  ( y  -h  w
)  e.  x ) ) )
118, 10syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  CH  ->  (
y  e.  x  -> 
( w  e.  x  ->  ( y  -h  w
)  e.  x ) ) )
127, 11syl7 65 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  CH  ->  (
y  e.  x  -> 
( ( B  C_  x  /\  w  e.  B
)  ->  ( y  -h  w )  e.  x
) ) )
1312exp4a 590 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  CH  ->  (
y  e.  x  -> 
( B  C_  x  ->  ( w  e.  B  ->  ( y  -h  w
)  e.  x ) ) ) )
1413com23 74 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  CH  ->  ( B  C_  x  ->  (
y  e.  x  -> 
( w  e.  B  ->  ( y  -h  w
)  e.  x ) ) ) )
1514imp41 577 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  w  e.  B )  ->  (
y  -h  w )  e.  x )
1615adantlr 696 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A )  /\  w  e.  B )  ->  (
y  -h  w )  e.  x )
1716adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
( y  -h  w
)  e.  x )
18 chel 22721 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  CH  /\  y  e.  x )  ->  y  e.  ~H )
1918adantlr 696 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  y  e.  ~H )
204cheli 22723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  A  ->  z  e.  ~H )
215cheli 22723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  B  ->  w  e.  ~H )
22 hvsubadd 22567 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ~H  /\  w  e.  ~H  /\  z  e.  ~H )  ->  (
( y  -h  w
)  =  z  <->  ( w  +h  z )  =  y ) )
23 ax-hvcom 22492 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( w  +h  z
)  =  ( z  +h  w ) )
2423eqeq1d 2443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( ( w  +h  z )  =  y  <-> 
( z  +h  w
)  =  y ) )
25 eqcom 2437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  +h  w )  =  y  <->  y  =  ( z  +h  w
) )
2624, 25syl6bb 253 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( ( w  +h  z )  =  y  <-> 
y  =  ( z  +h  w ) ) )
27263adant1 975 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ~H  /\  w  e.  ~H  /\  z  e.  ~H )  ->  (
( w  +h  z
)  =  y  <->  y  =  ( z  +h  w
) ) )
2822, 27bitrd 245 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ~H  /\  w  e.  ~H  /\  z  e.  ~H )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
29283com23 1159 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  ~H  /\  z  e.  ~H  /\  w  e.  ~H )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
3019, 20, 21, 29syl3an 1226 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A  /\  w  e.  B )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
31303expa 1153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A )  /\  w  e.  B )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
32 eleq1 2495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  -h  w )  =  z  ->  (
( y  -h  w
)  e.  x  <->  z  e.  x ) )
3331, 32syl6bir 221 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A )  /\  w  e.  B )  ->  (
y  =  ( z  +h  w )  -> 
( ( y  -h  w )  e.  x  <->  z  e.  x ) ) )
3433imp 419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
( ( y  -h  w )  e.  x  <->  z  e.  x ) )
3517, 34mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
z  e.  x )
36 simpr 448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
y  =  ( z  +h  w ) )
3735, 36jca 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
( z  e.  x  /\  y  =  (
z  +h  w ) ) )
3837exp31 588 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A )  ->  (
w  e.  B  -> 
( y  =  ( z  +h  w )  ->  ( z  e.  x  /\  y  =  ( z  +h  w
) ) ) ) )
3938reximdvai 2808 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A )  ->  ( E. w  e.  B  y  =  ( z  +h  w )  ->  E. w  e.  B  ( z  e.  x  /\  y  =  ( z  +h  w ) ) ) )
40 r19.42v 2854 . . . . . . . . . . . . . . 15  |-  ( E. w  e.  B  ( z  e.  x  /\  y  =  ( z  +h  w ) )  <->  ( z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w
) ) )
4139, 40syl6ib 218 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A )  ->  ( E. w  e.  B  y  =  ( z  +h  w )  ->  (
z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w ) ) ) )
4241reximdva 2810 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w )  ->  E. z  e.  A  ( z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w
) ) ) )
43 elin 3522 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( x  i^i 
A )  <->  ( z  e.  x  /\  z  e.  A ) )
44 ancom 438 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  z  e.  A )  <->  ( z  e.  A  /\  z  e.  x )
)
4543, 44bitri 241 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( x  i^i 
A )  <->  ( z  e.  A  /\  z  e.  x ) )
4645anbi1i 677 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( x  i^i  A )  /\  E. w  e.  B  y  =  ( z  +h  w ) )  <->  ( (
z  e.  A  /\  z  e.  x )  /\  E. w  e.  B  y  =  ( z  +h  w ) ) )
47 anass 631 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  A  /\  z  e.  x
)  /\  E. w  e.  B  y  =  ( z  +h  w
) )  <->  ( z  e.  A  /\  (
z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w ) ) ) )
4846, 47bitri 241 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( x  i^i  A )  /\  E. w  e.  B  y  =  ( z  +h  w ) )  <->  ( z  e.  A  /\  (
z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w ) ) ) )
4948rexbii2 2726 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( x  i^i  A ) E. w  e.  B  y  =  ( z  +h  w )  <->  E. z  e.  A  ( z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w
) ) )
5042, 49syl6ibr 219 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w )  ->  E. z  e.  ( x  i^i  A
) E. w  e.  B  y  =  ( z  +h  w ) ) )
514chshii 22718 . . . . . . . . . . . . . . 15  |-  A  e.  SH
52 shincl 22871 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  SH  /\  A  e.  SH )  ->  ( x  i^i  A
)  e.  SH )
538, 51, 52sylancl 644 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  i^i  A )  e.  SH )
5453ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( x  i^i  A )  e.  SH )
555chshii 22718 . . . . . . . . . . . . 13  |-  B  e.  SH
56 shsel 22804 . . . . . . . . . . . . 13  |-  ( ( ( x  i^i  A
)  e.  SH  /\  B  e.  SH )  ->  ( y  e.  ( ( x  i^i  A
)  +H  B )  <->  E. z  e.  (
x  i^i  A ) E. w  e.  B  y  =  ( z  +h  w ) ) )
5754, 55, 56sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( y  e.  ( ( x  i^i 
A )  +H  B
)  <->  E. z  e.  ( x  i^i  A ) E. w  e.  B  y  =  ( z  +h  w ) ) )
5850, 57sylibrd 226 . . . . . . . . . . 11  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w )  ->  y  e.  ( ( x  i^i 
A )  +H  B
) ) )
596, 58syl5bi 209 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( y  e.  ( A  +H  B
)  ->  y  e.  ( ( x  i^i 
A )  +H  B
) ) )
6059expimpd 587 . . . . . . . . 9  |-  ( ( x  e.  CH  /\  B  C_  x )  -> 
( ( y  e.  x  /\  y  e.  ( A  +H  B
) )  ->  y  e.  ( ( x  i^i 
A )  +H  B
) ) )
613, 60syl5bi 209 . . . . . . . 8  |-  ( ( x  e.  CH  /\  B  C_  x )  -> 
( y  e.  ( x  i^i  ( A  +H  B ) )  ->  y  e.  ( ( x  i^i  A
)  +H  B ) ) )
6261ssrdv 3346 . . . . . . 7  |-  ( ( x  e.  CH  /\  B  C_  x )  -> 
( x  i^i  ( A  +H  B ) ) 
C_  ( ( x  i^i  A )  +H  B ) )
6362adantl 453 . . . . . 6  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  +H  B
) )  C_  (
( x  i^i  A
)  +H  B ) )
642, 63eqsstr3d 3375 . . . . 5  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  vH  B
) )  C_  (
( x  i^i  A
)  +H  B ) )
65 chincl 22989 . . . . . . . 8  |-  ( ( x  e.  CH  /\  A  e.  CH )  ->  ( x  i^i  A
)  e.  CH )
664, 65mpan2 653 . . . . . . 7  |-  ( x  e.  CH  ->  (
x  i^i  A )  e.  CH )
67 chslej 22988 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  CH  /\  B  e.  CH )  ->  ( ( x  i^i 
A )  +H  B
)  C_  ( (
x  i^i  A )  vH  B ) )
6866, 5, 67sylancl 644 . . . . . 6  |-  ( x  e.  CH  ->  (
( x  i^i  A
)  +H  B ) 
C_  ( ( x  i^i  A )  vH  B ) )
6968ad2antrl 709 . . . . 5  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( ( x  i^i  A )  +H  B )  C_  (
( x  i^i  A
)  vH  B )
)
7064, 69sstrd 3350 . . . 4  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  vH  B
) )  C_  (
( x  i^i  A
)  vH  B )
)
7170exp32 589 . . 3  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  (
x  e.  CH  ->  ( B  C_  x  ->  ( x  i^i  ( A  vH  B ) ) 
C_  ( ( x  i^i  A )  vH  B ) ) ) )
7271ralrimiv 2780 . 2  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  A. x  e.  CH  ( B  C_  x  ->  ( x  i^i  ( A  vH  B
) )  C_  (
( x  i^i  A
)  vH  B )
) )
73 dmdbr2 23794 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  ( B  C_  x  ->  (
x  i^i  ( A  vH  B ) )  C_  ( ( x  i^i 
A )  vH  B
) ) ) )
744, 5, 73mp2an 654 . 2  |-  ( A 
MH*  B  <->  A. x  e.  CH  ( B  C_  x  -> 
( x  i^i  ( A  vH  B ) ) 
C_  ( ( x  i^i  A )  vH  B ) ) )
7572, 74sylibr 204 1  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  A  MH*  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    i^i cin 3311    C_ wss 3312   class class class wbr 4204  (class class class)co 6072   ~Hchil 22410    +h cva 22411    -h cmv 22416   SHcsh 22419   CHcch 22420    +H cph 22422    vH chj 22424    MH* cdmd 22458
This theorem is referenced by:  cmmdi  23907  sumdmdi  23911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cc 8304  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059  ax-hilex 22490  ax-hfvadd 22491  ax-hvcom 22492  ax-hvass 22493  ax-hv0cl 22494  ax-hvaddid 22495  ax-hfvmul 22496  ax-hvmulid 22497  ax-hvmulass 22498  ax-hvdistr1 22499  ax-hvdistr2 22500  ax-hvmul0 22501  ax-hfi 22569  ax-his1 22572  ax-his2 22573  ax-his3 22574  ax-his4 22575  ax-hcompl 22692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-omul 6720  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-acn 7818  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-rlim 12271  df-sum 12468  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-cn 17279  df-cnp 17280  df-lm 17281  df-haus 17367  df-tx 17582  df-hmeo 17775  df-fil 17866  df-fm 17958  df-flim 17959  df-flf 17960  df-xms 18338  df-ms 18339  df-tms 18340  df-cfil 19196  df-cau 19197  df-cmet 19198  df-grpo 21767  df-gid 21768  df-ginv 21769  df-gdiv 21770  df-ablo 21858  df-subgo 21878  df-vc 22013  df-nv 22059  df-va 22062  df-ba 22063  df-sm 22064  df-0v 22065  df-vs 22066  df-nmcv 22067  df-ims 22068  df-dip 22185  df-ssp 22209  df-ph 22302  df-cbn 22353  df-hnorm 22459  df-hba 22460  df-hvsub 22462  df-hlim 22463  df-hcau 22464  df-sh 22697  df-ch 22712  df-oc 22742  df-ch0 22743  df-shs 22798  df-chj 22800  df-dmd 23772
  Copyright terms: Public domain W3C validator