HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Unicode version

Theorem superpos 22859
Description: Superposition Principle. If  A and  B are distinct atoms, there exists a third atom, distinct from  A and  B, that is the superposition of  A and  B. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem superpos
StepHypRef Expression
1 atom1d 22858 . . 3  |-  ( A  e. HAtoms 
<->  E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) ) )
2 atom1d 22858 . . 3  |-  ( B  e. HAtoms 
<->  E. z  e.  ~H  ( z  =/=  0h  /\  B  =  ( span `  { z } ) ) )
3 reeanv 2678 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( E. y  e.  ~H  ( y  =/= 
0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  (
z  =/=  0h  /\  B  =  ( span `  { z } ) ) ) )
4 an4 800 . . . . . 6  |-  ( ( ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) ) )
5 neeq1 2427 . . . . . . . . . 10  |-  ( A  =  ( span `  {
y } )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  B
) )
6 neeq2 2428 . . . . . . . . . 10  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
y } )  =/= 
B  <->  ( span `  {
y } )  =/=  ( span `  {
z } ) ) )
75, 6sylan9bb 683 . . . . . . . . 9  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  ( span `  { z } ) ) )
87adantl 454 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  <->  ( span `  { y } )  =/=  ( span `  {
z } ) ) )
9 hvaddcl 21517 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  e.  ~H )
109adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  e.  ~H )
11 hvaddeq0 21573 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  <->  y  =  ( -u 1  .h  z ) ) )
12 sneq 3592 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( -u 1  .h  z )  ->  { y }  =  { (
-u 1  .h  z
) } )
1312fveq2d 5427 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( -u 1  .h  z )  ->  ( span `  { y } )  =  ( span `  { ( -u 1  .h  z ) } ) )
14 neg1cn 9746 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  e.  CC
15 ax-1cn 8728 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
16 ax-1ne0 8739 . . . . . . . . . . . . . . . . . . . . 21  |-  1  =/=  0
1715, 16negne0i 9054 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  =/=  0
18 spansncol 22072 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ~H  /\  -u 1  e.  CC  /\  -u 1  =/=  0 )  ->  ( span `  {
( -u 1  .h  z
) } )  =  ( span `  {
z } ) )
1914, 17, 18mp3an23 1274 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  ( span `  { ( -u
1  .h  z ) } )  =  (
span `  { z } ) )
2013, 19sylan9eqr 2310 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ~H  /\  y  =  ( -u 1  .h  z ) )  -> 
( span `  { y } )  =  (
span `  { z } ) )
2120ex 425 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  (
y  =  ( -u
1  .h  z )  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2221adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  =  (
-u 1  .h  z
)  ->  ( span `  { y } )  =  ( span `  {
z } ) ) )
2311, 22sylbid 208 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2423necon3d 2457 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( y  +h  z
)  =/=  0h )
)
2524imp 420 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  =/=  0h )
26 spansna 22855 . . . . . . . . . . . . 13  |-  ( ( ( y  +h  z
)  e.  ~H  /\  ( y  +h  z
)  =/=  0h )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2710, 25, 26syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2827adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2928adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  e. HAtoms )
30 eqeq2 2265 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } ) ) )
3130biimpd 200 . . . . . . . . . . . . . . 15  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
y } ) ) )
32 spansneleqi 22073 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { y } )  ->  (
y  +h  z )  e.  ( span `  {
y } ) ) )
339, 32syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( y  +h  z
)  e.  ( span `  { y } ) ) )
34 elspansn 22070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { y } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  y ) ) )
3534adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y ) ) )
36 addcl 8752 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( v  e.  CC  /\  -u 1  e.  CC )  ->  ( v  + 
-u 1 )  e.  CC )
3714, 36mpan2 655 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  CC  ->  (
v  +  -u 1
)  e.  CC )
3837ad2antlr 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( v  +  -u
1 )  e.  CC )
39 hvmulcl 21518 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( v  .h  y
)  e.  ~H )
4039ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  y
)  e.  ~H )
4140adantlr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  y )  e.  ~H )
42 simpll 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  y  e.  ~H )
43 simplr 734 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  z  e.  ~H )
44 hvsubadd 21581 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( v  .h  y )  -h  y
)  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4541, 42, 43, 44syl3anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  y )  -h  y )  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4645biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  z )
47 hvsubval 21521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
4839, 47sylancom 651 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
49 ax-hvdistr2 21514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5014, 49mp3an2 1270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5148, 50eqtr4d 2291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5251ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5352adantlr 698 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y )  =  ( ( v  +  -u
1 )  .h  y
) )
5453adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5546, 54eqtr3d 2290 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
z  =  ( ( v  +  -u 1
)  .h  y ) )
56 oveq1 5764 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5756eqeq2d 2267 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( z  =  ( w  .h  y )  <-> 
z  =  ( ( v  +  -u 1
)  .h  y ) ) )
5857rcla4ev 2835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  z  =  ( ( v  +  -u 1
)  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
5938, 55, 58syl2anc 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
6059exp31 590 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) ) )
6160rexlimdv 2637 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6235, 61sylbid 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6333, 62syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
64 elspansn 22070 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ~H  ->  (
z  e.  ( span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6564adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( z  e.  (
span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6663, 65sylibrd 227 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
6766adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
68 spansneleq 22074 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { z } )  =  ( span `  { y } ) ) )
69 eqcom 2258 . . . . . . . . . . . . . . . . . 18  |-  ( (
span `  { z } )  =  (
span `  { y } )  <->  ( span `  { y } )  =  ( span `  {
z } ) )
7068, 69syl6ib 219 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7170adantlr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7267, 71syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
7331, 72sylan9r 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  A  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7473necon3d 2457 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7574adantlrl 703 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  A  =  (
span `  { y } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7675adantrr 700 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  A ) )
7776imp 420 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  A )
78 eqeq2 2265 . . . . . . . . . . . . . . . 16  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } ) ) )
7978biimpd 200 . . . . . . . . . . . . . . 15  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
z } ) ) )
80 spansneleqi 22073 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { z } )  ->  (
y  +h  z )  e.  ( span `  {
z } ) ) )
819, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( y  +h  z
)  e.  ( span `  { z } ) ) )
82 elspansn 22070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { z } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  z ) ) )
8382adantl 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z ) ) )
8437ad2antlr 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( v  +  -u
1 )  e.  CC )
85 hvmulcl 21518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( v  .h  z
)  e.  ~H )
8685ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  z
)  e.  ~H )
8786adantll 697 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  z )  e.  ~H )
88 hvsubadd 21581 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( ( v  .h  z )  -h  z
)  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
8987, 43, 42, 88syl3anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
90 ax-hvcom 21506 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  =  ( z  +h  y ) )
9190adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( y  +h  z )  =  ( z  +h  y ) )
9291eqeq1d 2264 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( y  +h  z )  =  ( v  .h  z
)  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
9389, 92bitr4d 249 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( y  +h  z )  =  ( v  .h  z ) ) )
9493biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  y )
95 hvsubval 21521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
9685, 95sylancom 651 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
97 ax-hvdistr2 21514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9814, 97mp3an2 1270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9996, 98eqtr4d 2291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10099ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
101100adantll 697 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z )  =  ( ( v  +  -u
1 )  .h  z
) )
102101adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10394, 102eqtr3d 2290 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
y  =  ( ( v  +  -u 1
)  .h  z ) )
104 oveq1 5764 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
105104eqeq2d 2267 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( y  =  ( w  .h  z )  <-> 
y  =  ( ( v  +  -u 1
)  .h  z ) ) )
106105rcla4ev 2835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  y  =  ( ( v  +  -u 1
)  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
10784, 103, 106syl2anc 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
108107exp31 590 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) ) )
109108rexlimdv 2637 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11083, 109sylbid 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11181, 110syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
112 elspansn 22070 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  (
y  e.  ( span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
113112adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  e.  (
span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
114111, 113sylibrd 227 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
115114adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
116 spansneleq 22074 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ~H  /\  y  =/=  0h )  -> 
( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
117116adantll 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
118115, 117syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
11979, 118sylan9r 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  B  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
120119necon3d 2457 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
121120adantlrr 704 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  B  =  (
span `  { z } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
122121adantrl 699 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  B ) )
123122imp 420 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  B )
124 spanpr 22084 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
( y  +h  z
) } )  C_  ( span `  { y ,  z } ) )
125124adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( span `  {
y ,  z } ) )
126 oveq12 5766 . . . . . . . . . . . . . 14  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  vH  B
)  =  ( (
span `  { y } )  vH  ( span `  { z } ) ) )
127 df-pr 3588 . . . . . . . . . . . . . . . . 17  |-  { y ,  z }  =  ( { y }  u.  { z } )
128127fveq2i 5426 . . . . . . . . . . . . . . . 16  |-  ( span `  { y ,  z } )  =  (
span `  ( {
y }  u.  {
z } ) )
129 snssi 3700 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~H  ->  { y }  C_  ~H )
130 snssi 3700 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  { z }  C_  ~H )
131 spanun 22049 . . . . . . . . . . . . . . . . 17  |-  ( ( { y }  C_  ~H  /\  { z } 
C_  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  {
y } )  +H  ( span `  {
z } ) ) )
132129, 130, 131syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  { y } )  +H  ( span `  {
z } ) ) )
133128, 132syl5eq 2300 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
y ,  z } )  =  ( (
span `  { y } )  +H  ( span `  { z } ) ) )
134 spansnch 22064 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  CH )
135 spansnj 22169 . . . . . . . . . . . . . . . 16  |-  ( ( ( span `  {
y } )  e. 
CH  /\  z  e.  ~H )  ->  ( (
span `  { y } )  +H  ( span `  { z } ) )  =  ( ( span `  {
y } )  vH  ( span `  { z } ) ) )
136134, 135sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  +H  ( span `  {
z } ) )  =  ( ( span `  { y } )  vH  ( span `  {
z } ) ) )
137133, 136eqtr2d 2289 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  vH  ( span `  { z } ) )  =  ( span `  {
y ,  z } ) )
138126, 137sylan9eqr 2310 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  vH  B )  =  (
span `  { y ,  z } ) )
139125, 138sseqtr4d 3157 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
140139adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) )
141140adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
142 neeq1 2427 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  A  <->  (
span `  { (
y  +h  z ) } )  =/=  A
) )
143 neeq1 2427 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  B  <->  (
span `  { (
y  +h  z ) } )  =/=  B
) )
144 sseq1 3141 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  C_  ( A  vH  B )  <->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) ) )
145142, 143, 1443anbi123d 1257 . . . . . . . . . . 11  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( ( x  =/= 
A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) )  <-> 
( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) ) )
146145rcla4ev 2835 . . . . . . . . . 10  |-  ( ( ( span `  {
( y  +h  z
) } )  e. HAtoms  /\  ( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) )  ->  E. x  e. HAtoms  (
x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B
) ) )
14729, 77, 123, 141, 146syl13anc 1189 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
148147ex 425 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1498, 148sylbid 208 . . . . . . 7  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
150149expl 604 . . . . . 6  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
1514, 150syl5bi 210 . . . . 5  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  A  =  ( span `  {
y } ) )  /\  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
152151rexlimivv 2643 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1533, 152sylbir 206 . . 3  |-  ( ( E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1541, 2, 153syl2anb 467 . 2  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms
)  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1551543impia 1153 1  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517    u. cun 3092    C_ wss 3094   {csn 3581   {cpr 3582   ` cfv 4638  (class class class)co 5757   CCcc 8668   0cc0 8670   1c1 8671    + caddc 8673   -ucneg 8971   ~Hchil 21424    +h cva 21425    .h csm 21426   0hc0v 21429    -h cmv 21430   CHcch 21434    +H cph 21436   spancspn 21437    vH chj 21438  HAtomscat 21470
This theorem is referenced by:  chirredi  22899
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cc 7994  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750  ax-hilex 21504  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvmulass 21512  ax-hvdistr1 21513  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589  ax-hcompl 21706
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-acn 7508  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-rlim 11893  df-sum 12089  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-cn 16884  df-cnp 16885  df-lm 16886  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cfil 18608  df-cau 18609  df-cmet 18610  df-grpo 20783  df-gid 20784  df-ginv 20785  df-gdiv 20786  df-ablo 20874  df-subgo 20894  df-vc 21027  df-nv 21073  df-va 21076  df-ba 21077  df-sm 21078  df-0v 21079  df-vs 21080  df-nmcv 21081  df-ims 21082  df-dip 21199  df-ssp 21223  df-ph 21316  df-cbn 21367  df-hnorm 21473  df-hba 21474  df-hvsub 21476  df-hlim 21477  df-hcau 21478  df-sh 21711  df-ch 21726  df-oc 21756  df-ch0 21757  df-shs 21812  df-span 21813  df-chj 21814  df-pjh 21899  df-cv 22784  df-at 22843
  Copyright terms: Public domain W3C validator