MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Unicode version

Theorem supexpr 8678
Description: The union of a non-empty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 8676 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
2 ltrelpr 8622 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
32brel 4737 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
43simpld 445 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
54ralimi 2618 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
6 dfss3 3170 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
75, 6sylibr 203 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
87rexlimivw 2663 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
98adantl 452 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
10 suplem2pr 8677 . . . . . 6  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
1110simpld 445 . . . . 5  |-  ( A 
C_  P.  ->  ( y  e.  A  ->  -.  U. A  <P  y )
)
1211ralrimiv 2625 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  A  -.  U. A  <P  y )
1310simprd 449 . . . . 5  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  E. z  e.  A  y  <P  z ) )
1413ralrimivw 2627 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) )
1512, 14jca 518 . . 3  |-  ( A 
C_  P.  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
169, 15syl 15 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
17 breq1 4026 . . . . . 6  |-  ( x  =  U. A  -> 
( x  <P  y  <->  U. A  <P  y )
)
1817notbid 285 . . . . 5  |-  ( x  =  U. A  -> 
( -.  x  <P  y  <->  -.  U. A  <P  y
) )
1918ralbidv 2563 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  U. A  <P  y
) )
20 breq2 4027 . . . . . 6  |-  ( x  =  U. A  -> 
( y  <P  x  <->  y 
<P  U. A ) )
2120imbi1d 308 . . . . 5  |-  ( x  =  U. A  -> 
( ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2221ralbidv 2563 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e. 
P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2319, 22anbi12d 691 . . 3  |-  ( x  =  U. A  -> 
( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <-> 
( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) ) )
2423rspcev 2884 . 2  |-  ( ( U. A  e.  P.  /\  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
251, 16, 24syl2anc 642 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   U.cuni 3827   class class class wbr 4023   P.cnp 8481    <P cltp 8485
This theorem is referenced by:  supsrlem  8733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-mi 8498  df-lti 8499  df-ltpq 8534  df-enq 8535  df-nq 8536  df-ltnq 8542  df-np 8605  df-ltp 8609
  Copyright terms: Public domain W3C validator