MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Unicode version

Theorem supexpr 8646
Description: The union of a non-empty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 8644 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
2 ltrelpr 8590 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
32brel 4725 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
43simpld 447 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
54ralimi 2593 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
6 dfss3 3145 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
75, 6sylibr 205 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
87rexlimivw 2638 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
98adantl 454 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
10 suplem2pr 8645 . . . . . 6  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
1110simpld 447 . . . . 5  |-  ( A 
C_  P.  ->  ( y  e.  A  ->  -.  U. A  <P  y )
)
1211ralrimiv 2600 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  A  -.  U. A  <P  y )
1310simprd 451 . . . . 5  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  E. z  e.  A  y  <P  z ) )
1413ralrimivw 2602 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) )
1512, 14jca 520 . . 3  |-  ( A 
C_  P.  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
169, 15syl 17 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
17 breq1 4000 . . . . . 6  |-  ( x  =  U. A  -> 
( x  <P  y  <->  U. A  <P  y )
)
1817notbid 287 . . . . 5  |-  ( x  =  U. A  -> 
( -.  x  <P  y  <->  -.  U. A  <P  y
) )
1918ralbidv 2538 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  U. A  <P  y
) )
20 breq2 4001 . . . . . 6  |-  ( x  =  U. A  -> 
( y  <P  x  <->  y 
<P  U. A ) )
2120imbi1d 310 . . . . 5  |-  ( x  =  U. A  -> 
( ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2221ralbidv 2538 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e. 
P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2319, 22anbi12d 694 . . 3  |-  ( x  =  U. A  -> 
( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <-> 
( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) ) )
2423rcla4ev 2859 . 2  |-  ( ( U. A  e.  P.  /\  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
251, 16, 24syl2anc 645 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519    C_ wss 3127   (/)c0 3430   U.cuni 3801   class class class wbr 3997   P.cnp 8449    <P cltp 8453
This theorem is referenced by:  supsrlem  8701
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-recs 6356  df-rdg 6391  df-oadd 6451  df-omul 6452  df-er 6628  df-ni 8464  df-mi 8466  df-lti 8467  df-ltpq 8502  df-enq 8503  df-nq 8504  df-ltnq 8510  df-np 8573  df-ltp 8577
  Copyright terms: Public domain W3C validator