MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Unicode version

Theorem supexpr 8673
Description: The union of a non-empty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 8671 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
2 ltrelpr 8617 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
32brel 4736 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
43simpld 447 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
54ralimi 2619 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
6 dfss3 3171 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
75, 6sylibr 205 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
87rexlimivw 2664 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
98adantl 454 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
10 suplem2pr 8672 . . . . . 6  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
1110simpld 447 . . . . 5  |-  ( A 
C_  P.  ->  ( y  e.  A  ->  -.  U. A  <P  y )
)
1211ralrimiv 2626 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  A  -.  U. A  <P  y )
1310simprd 451 . . . . 5  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  E. z  e.  A  y  <P  z ) )
1413ralrimivw 2628 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) )
1512, 14jca 520 . . 3  |-  ( A 
C_  P.  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
169, 15syl 17 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
17 breq1 4027 . . . . . 6  |-  ( x  =  U. A  -> 
( x  <P  y  <->  U. A  <P  y )
)
1817notbid 287 . . . . 5  |-  ( x  =  U. A  -> 
( -.  x  <P  y  <->  -.  U. A  <P  y
) )
1918ralbidv 2564 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  U. A  <P  y
) )
20 breq2 4028 . . . . . 6  |-  ( x  =  U. A  -> 
( y  <P  x  <->  y 
<P  U. A ) )
2120imbi1d 310 . . . . 5  |-  ( x  =  U. A  -> 
( ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2221ralbidv 2564 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e. 
P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2319, 22anbi12d 693 . . 3  |-  ( x  =  U. A  -> 
( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <-> 
( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) ) )
2423rspcev 2885 . 2  |-  ( ( U. A  e.  P.  /\  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
251, 16, 24syl2anc 644 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545    C_ wss 3153   (/)c0 3456   U.cuni 3828   class class class wbr 4024   P.cnp 8476    <P cltp 8480
This theorem is referenced by:  supsrlem  8728
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-oadd 6478  df-omul 6479  df-er 6655  df-ni 8491  df-mi 8493  df-lti 8494  df-ltpq 8529  df-enq 8530  df-nq 8531  df-ltnq 8537  df-np 8600  df-ltp 8604
  Copyright terms: Public domain W3C validator