MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem1pr Unicode version

Theorem suplem1pr 8692
Description: The union of a non-empty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem1pr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
Distinct variable group:    x, y, A

Proof of Theorem suplem1pr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 8638 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4753 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
32simpld 445 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
43ralimi 2631 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
5 dfss3 3183 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
64, 5sylibr 203 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
76rexlimivw 2676 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
87adantl 452 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
9 n0 3477 . . . . 5  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
10 ssel 3187 . . . . . . 7  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  z  e.  P. ) )
11 prn0 8629 . . . . . . . . . 10  |-  ( z  e.  P.  ->  z  =/=  (/) )
12 0pss 3505 . . . . . . . . . 10  |-  ( (/)  C.  z  <->  z  =/=  (/) )
1311, 12sylibr 203 . . . . . . . . 9  |-  ( z  e.  P.  ->  (/)  C.  z
)
14 elssuni 3871 . . . . . . . . 9  |-  ( z  e.  A  ->  z  C_ 
U. A )
15 psssstr 3295 . . . . . . . . 9  |-  ( (
(/)  C.  z  /\  z  C_ 
U. A )  ->  (/)  C.  U. A )
1613, 14, 15syl2an 463 . . . . . . . 8  |-  ( ( z  e.  P.  /\  z  e.  A )  -> 
(/)  C.  U. A )
1716expcom 424 . . . . . . 7  |-  ( z  e.  A  ->  (
z  e.  P.  ->  (/)  C. 
U. A ) )
1810, 17sylcom 25 . . . . . 6  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  (/)  C.  U. A ) )
1918exlimdv 1626 . . . . 5  |-  ( A 
C_  P.  ->  ( E. z  z  e.  A  -> 
(/)  C.  U. A ) )
209, 19syl5bi 208 . . . 4  |-  ( A 
C_  P.  ->  ( A  =/=  (/)  ->  (/)  C.  U. A ) )
21 prpssnq 8630 . . . . . . 7  |-  ( x  e.  P.  ->  x  C.  Q. )
2221adantl 452 . . . . . 6  |-  ( ( A  C_  P.  /\  x  e.  P. )  ->  x  C.  Q. )
23 ltprord 8670 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  <->  y 
C.  x ) )
24 pssss 3284 . . . . . . . . . 10  |-  ( y 
C.  x  ->  y  C_  x )
2523, 24syl6bi 219 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  ->  y  C_  x )
)
262, 25mpcom 32 . . . . . . . 8  |-  ( y 
<P  x  ->  y  C_  x )
2726ralimi 2631 . . . . . . 7  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  C_  x )
28 unissb 3873 . . . . . . 7  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
2927, 28sylibr 203 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  U. A  C_  x )
30 sspsstr 3294 . . . . . . 7  |-  ( ( U. A  C_  x  /\  x  C.  Q. )  ->  U. A  C.  Q. )
3130expcom 424 . . . . . 6  |-  ( x 
C.  Q.  ->  ( U. A  C_  x  ->  U. A  C.  Q. ) )
3222, 29, 31syl2im 34 . . . . 5  |-  ( ( A  C_  P.  /\  x  e.  P. )  ->  ( A. y  e.  A  y  <P  x  ->  U. A  C.  Q. ) )
3332rexlimdva 2680 . . . 4  |-  ( A 
C_  P.  ->  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  U. A  C.  Q. ) )
3420, 33anim12d 546 . . 3  |-  ( A 
C_  P.  ->  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( (/)  C.  U. A  /\  U. A  C.  Q. ) ) )
358, 34mpcom 32 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( (/)  C.  U. A  /\  U. A  C.  Q. ) )
36 prcdnq 8633 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  x  e.  z )  ->  ( y  <Q  x  ->  y  e.  z ) )
3736ex 423 . . . . . . . . . . . 12  |-  ( z  e.  P.  ->  (
x  e.  z  -> 
( y  <Q  x  ->  y  e.  z ) ) )
3837com3r 73 . . . . . . . . . . 11  |-  ( y 
<Q  x  ->  ( z  e.  P.  ->  (
x  e.  z  -> 
y  e.  z ) ) )
3910, 38sylan9 638 . . . . . . . . . 10  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  (
z  e.  A  -> 
( x  e.  z  ->  y  e.  z ) ) )
4039reximdvai 2666 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  ( E. z  e.  A  x  e.  z  ->  E. z  e.  A  y  e.  z ) )
41 eluni2 3847 . . . . . . . . 9  |-  ( x  e.  U. A  <->  E. z  e.  A  x  e.  z )
42 eluni2 3847 . . . . . . . . 9  |-  ( y  e.  U. A  <->  E. z  e.  A  y  e.  z )
4340, 41, 423imtr4g 261 . . . . . . . 8  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  (
x  e.  U. A  ->  y  e.  U. A
) )
4443ex 423 . . . . . . 7  |-  ( A 
C_  P.  ->  ( y 
<Q  x  ->  ( x  e.  U. A  -> 
y  e.  U. A
) ) )
4544com23 72 . . . . . 6  |-  ( A 
C_  P.  ->  ( x  e.  U. A  -> 
( y  <Q  x  ->  y  e.  U. A
) ) )
4645alrimdv 1623 . . . . 5  |-  ( A 
C_  P.  ->  ( x  e.  U. A  ->  A. y ( y  <Q  x  ->  y  e.  U. A ) ) )
47 eluni 3846 . . . . . 6  |-  ( x  e.  U. A  <->  E. z
( x  e.  z  /\  z  e.  A
) )
48 prnmax 8635 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  x  e.  z )  ->  E. y  e.  z  x  <Q  y )
4948ex 423 . . . . . . . . . . . 12  |-  ( z  e.  P.  ->  (
x  e.  z  ->  E. y  e.  z  x  <Q  y ) )
5010, 49syl6 29 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  (
x  e.  z  ->  E. y  e.  z  x  <Q  y ) ) )
5150com23 72 . . . . . . . . . 10  |-  ( A 
C_  P.  ->  ( x  e.  z  ->  (
z  e.  A  ->  E. y  e.  z  x  <Q  y ) ) )
5251imp 418 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  x  e.  z )  ->  (
z  e.  A  ->  E. y  e.  z  x  <Q  y ) )
53 ssrexv 3251 . . . . . . . . . 10  |-  ( z 
C_  U. A  ->  ( E. y  e.  z  x  <Q  y  ->  E. y  e.  U. A x  <Q  y ) )
5414, 53syl 15 . . . . . . . . 9  |-  ( z  e.  A  ->  ( E. y  e.  z  x  <Q  y  ->  E. y  e.  U. A x  <Q  y ) )
5552, 54sylcom 25 . . . . . . . 8  |-  ( ( A  C_  P.  /\  x  e.  z )  ->  (
z  e.  A  ->  E. y  e.  U. A x  <Q  y ) )
5655expimpd 586 . . . . . . 7  |-  ( A 
C_  P.  ->  ( ( x  e.  z  /\  z  e.  A )  ->  E. y  e.  U. A x  <Q  y ) )
5756exlimdv 1626 . . . . . 6  |-  ( A 
C_  P.  ->  ( E. z ( x  e.  z  /\  z  e.  A )  ->  E. y  e.  U. A x  <Q  y ) )
5847, 57syl5bi 208 . . . . 5  |-  ( A 
C_  P.  ->  ( x  e.  U. A  ->  E. y  e.  U. A x  <Q  y ) )
5946, 58jcad 519 . . . 4  |-  ( A 
C_  P.  ->  ( x  e.  U. A  -> 
( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e. 
U. A x  <Q  y ) ) )
6059ralrimiv 2638 . . 3  |-  ( A 
C_  P.  ->  A. x  e.  U. A ( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e.  U. A x 
<Q  y ) )
618, 60syl 15 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A. x  e.  U. A ( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e.  U. A x 
<Q  y ) )
62 elnp 8627 . 2  |-  ( U. A  e.  P.  <->  ( ( (/)  C.  U. A  /\  U. A  C.  Q. )  /\  A. x  e.  U. A
( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e. 
U. A x  <Q  y ) ) )
6335, 61, 62sylanbrc 645 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530   E.wex 1531    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165    C. wpss 3166   (/)c0 3468   U.cuni 3843   class class class wbr 4039   Q.cnq 8490    <Q cltq 8496   P.cnp 8497    <P cltp 8501
This theorem is referenced by:  supexpr  8694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-ni 8512  df-nq 8552  df-ltnq 8558  df-np 8621  df-ltp 8625
  Copyright terms: Public domain W3C validator