MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem1pr Unicode version

Theorem suplem1pr 8672
Description: The union of a non-empty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem1pr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
Distinct variable group:    x, y, A
Dummy variable  z is distinct from all other variables.

Proof of Theorem suplem1pr
StepHypRef Expression
1 ltrelpr 8618 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4737 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
32simpld 447 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
43ralimi 2620 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
5 dfss3 3172 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
64, 5sylibr 205 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
76rexlimivw 2665 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
87adantl 454 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
9 n0 3466 . . . . 5  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
10 ssel 3176 . . . . . . 7  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  z  e.  P. ) )
11 prn0 8609 . . . . . . . . . 10  |-  ( z  e.  P.  ->  z  =/=  (/) )
12 0pss 3494 . . . . . . . . . 10  |-  ( (/)  C.  z  <->  z  =/=  (/) )
1311, 12sylibr 205 . . . . . . . . 9  |-  ( z  e.  P.  ->  (/)  C.  z
)
14 elssuni 3857 . . . . . . . . 9  |-  ( z  e.  A  ->  z  C_ 
U. A )
15 psssstr 3284 . . . . . . . . 9  |-  ( (
(/)  C.  z  /\  z  C_ 
U. A )  ->  (/)  C.  U. A )
1613, 14, 15syl2an 465 . . . . . . . 8  |-  ( ( z  e.  P.  /\  z  e.  A )  -> 
(/)  C.  U. A )
1716expcom 426 . . . . . . 7  |-  ( z  e.  A  ->  (
z  e.  P.  ->  (/)  C. 
U. A ) )
1810, 17sylcom 27 . . . . . 6  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  (/)  C.  U. A ) )
1918exlimdv 1665 . . . . 5  |-  ( A 
C_  P.  ->  ( E. z  z  e.  A  -> 
(/)  C.  U. A ) )
209, 19syl5bi 210 . . . 4  |-  ( A 
C_  P.  ->  ( A  =/=  (/)  ->  (/)  C.  U. A ) )
21 prpssnq 8610 . . . . . . 7  |-  ( x  e.  P.  ->  x  C.  Q. )
2221adantl 454 . . . . . 6  |-  ( ( A  C_  P.  /\  x  e.  P. )  ->  x  C.  Q. )
23 ltprord 8650 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  <->  y 
C.  x ) )
24 pssss 3273 . . . . . . . . . 10  |-  ( y 
C.  x  ->  y  C_  x )
2523, 24syl6bi 221 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  ->  y  C_  x )
)
262, 25mpcom 34 . . . . . . . 8  |-  ( y 
<P  x  ->  y  C_  x )
2726ralimi 2620 . . . . . . 7  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  C_  x )
28 unissb 3859 . . . . . . 7  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
2927, 28sylibr 205 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  U. A  C_  x )
30 sspsstr 3283 . . . . . . 7  |-  ( ( U. A  C_  x  /\  x  C.  Q. )  ->  U. A  C.  Q. )
3130expcom 426 . . . . . 6  |-  ( x 
C.  Q.  ->  ( U. A  C_  x  ->  U. A  C.  Q. ) )
3222, 29, 31syl2im 36 . . . . 5  |-  ( ( A  C_  P.  /\  x  e.  P. )  ->  ( A. y  e.  A  y  <P  x  ->  U. A  C.  Q. ) )
3332rexlimdva 2669 . . . 4  |-  ( A 
C_  P.  ->  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  U. A  C.  Q. ) )
3420, 33anim12d 548 . . 3  |-  ( A 
C_  P.  ->  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( (/)  C.  U. A  /\  U. A  C.  Q. ) ) )
358, 34mpcom 34 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( (/)  C.  U. A  /\  U. A  C.  Q. ) )
36 prcdnq 8613 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  x  e.  z )  ->  ( y  <Q  x  ->  y  e.  z ) )
3736ex 425 . . . . . . . . . . . 12  |-  ( z  e.  P.  ->  (
x  e.  z  -> 
( y  <Q  x  ->  y  e.  z ) ) )
3837com3r 75 . . . . . . . . . . 11  |-  ( y 
<Q  x  ->  ( z  e.  P.  ->  (
x  e.  z  -> 
y  e.  z ) ) )
3910, 38sylan9 640 . . . . . . . . . 10  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  (
z  e.  A  -> 
( x  e.  z  ->  y  e.  z ) ) )
4039reximdvai 2655 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  ( E. z  e.  A  x  e.  z  ->  E. z  e.  A  y  e.  z ) )
41 eluni2 3833 . . . . . . . . 9  |-  ( x  e.  U. A  <->  E. z  e.  A  x  e.  z )
42 eluni2 3833 . . . . . . . . 9  |-  ( y  e.  U. A  <->  E. z  e.  A  y  e.  z )
4340, 41, 423imtr4g 263 . . . . . . . 8  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  (
x  e.  U. A  ->  y  e.  U. A
) )
4443ex 425 . . . . . . 7  |-  ( A 
C_  P.  ->  ( y 
<Q  x  ->  ( x  e.  U. A  -> 
y  e.  U. A
) ) )
4544com23 74 . . . . . 6  |-  ( A 
C_  P.  ->  ( x  e.  U. A  -> 
( y  <Q  x  ->  y  e.  U. A
) ) )
4645alrimdv 1620 . . . . 5  |-  ( A 
C_  P.  ->  ( x  e.  U. A  ->  A. y ( y  <Q  x  ->  y  e.  U. A ) ) )
47 eluni 3832 . . . . . 6  |-  ( x  e.  U. A  <->  E. z
( x  e.  z  /\  z  e.  A
) )
48 prnmax 8615 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  x  e.  z )  ->  E. y  e.  z  x  <Q  y )
4948ex 425 . . . . . . . . . . . 12  |-  ( z  e.  P.  ->  (
x  e.  z  ->  E. y  e.  z  x  <Q  y ) )
5010, 49syl6 31 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  (
x  e.  z  ->  E. y  e.  z  x  <Q  y ) ) )
5150com23 74 . . . . . . . . . 10  |-  ( A 
C_  P.  ->  ( x  e.  z  ->  (
z  e.  A  ->  E. y  e.  z  x  <Q  y ) ) )
5251imp 420 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  x  e.  z )  ->  (
z  e.  A  ->  E. y  e.  z  x  <Q  y ) )
53 ssrexv 3240 . . . . . . . . . 10  |-  ( z 
C_  U. A  ->  ( E. y  e.  z  x  <Q  y  ->  E. y  e.  U. A x  <Q  y ) )
5414, 53syl 17 . . . . . . . . 9  |-  ( z  e.  A  ->  ( E. y  e.  z  x  <Q  y  ->  E. y  e.  U. A x  <Q  y ) )
5552, 54sylcom 27 . . . . . . . 8  |-  ( ( A  C_  P.  /\  x  e.  z )  ->  (
z  e.  A  ->  E. y  e.  U. A x  <Q  y ) )
5655expimpd 588 . . . . . . 7  |-  ( A 
C_  P.  ->  ( ( x  e.  z  /\  z  e.  A )  ->  E. y  e.  U. A x  <Q  y ) )
5756exlimdv 1665 . . . . . 6  |-  ( A 
C_  P.  ->  ( E. z ( x  e.  z  /\  z  e.  A )  ->  E. y  e.  U. A x  <Q  y ) )
5847, 57syl5bi 210 . . . . 5  |-  ( A 
C_  P.  ->  ( x  e.  U. A  ->  E. y  e.  U. A x  <Q  y ) )
5946, 58jcad 521 . . . 4  |-  ( A 
C_  P.  ->  ( x  e.  U. A  -> 
( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e. 
U. A x  <Q  y ) ) )
6059ralrimiv 2627 . . 3  |-  ( A 
C_  P.  ->  A. x  e.  U. A ( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e.  U. A x 
<Q  y ) )
618, 60syl 17 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A. x  e.  U. A ( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e.  U. A x 
<Q  y ) )
62 elnp 8607 . 2  |-  ( U. A  e.  P.  <->  ( ( (/)  C.  U. A  /\  U. A  C.  Q. )  /\  A. x  e.  U. A
( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e. 
U. A x  <Q  y ) ) )
6335, 61, 62sylanbrc 647 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1528   E.wex 1529    e. wcel 1685    =/= wne 2448   A.wral 2545   E.wrex 2546    C_ wss 3154    C. wpss 3155   (/)c0 3457   U.cuni 3829   class class class wbr 4025   Q.cnq 8470    <Q cltq 8476   P.cnp 8477    <P cltp 8481
This theorem is referenced by:  supexpr  8674
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-ni 8492  df-nq 8532  df-ltnq 8538  df-np 8601  df-ltp 8605
  Copyright terms: Public domain W3C validator