MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Unicode version

Theorem supsr 8199
Description: A non-empty, bounded set of signed reals has a supremum. (Cotributed by Mario Carneiro, 15-Jun-2013.) (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supsr
StepHypRef Expression
1 n0 3119 . . 3  |-  ( A  =/=  (/)  <->  E. u  u  e.  A )
2 ltrelsr 8158 . . . . . . . . . . . . 13  |-  <R  C_  ( R.  X.  R. )
32brel 4364 . . . . . . . . . . . 12  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
43simpld 440 . . . . . . . . . . 11  |-  ( y 
<R  x  ->  y  e. 
R. )
54ralimi 2377 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
6 dfss3 2845 . . . . . . . . . 10  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
75, 6sylibr 201 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
87sseld 2854 . . . . . . . 8  |-  ( A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
98rexlimivw 2422 . . . . . . 7  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
109impcom 416 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  u  e.  R. )
11 eleq1 2160 . . . . . . . . 9  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
u  e.  A  <->  if (
u  e.  R. ,  u ,  1R )  e.  A ) )
1211anbi1d 680 . . . . . . . 8  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  <->  ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
) ) )
1312imbi1d 306 . . . . . . 7  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )  <->  ( ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) ) )
14 opeq1 3441 . . . . . . . . . . . 12  |-  ( v  =  w  ->  <. v ,  1P >.  =  <. w ,  1P >. )
15 eceq1 6195 . . . . . . . . . . . 12  |-  ( <.
v ,  1P >.  = 
<. w ,  1P >.  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1614, 15syl 15 . . . . . . . . . . 11  |-  ( v  =  w  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1716oveq2d 5420 . . . . . . . . . 10  |-  ( v  =  w  ->  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  =  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  ) )
1817eleq1d 2166 . . . . . . . . 9  |-  ( v  =  w  ->  (
( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A  <->  ( if ( u  e. 
R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A
) )
1918cbvabv 2646 . . . . . . . 8  |-  { v  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A }  =  {
w  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
20 1sr 8168 . . . . . . . . 9  |-  1R  e.  R.
2120elimel 3272 . . . . . . . 8  |-  if ( u  e.  R. ,  u ,  1R )  e.  R.
2219, 21supsrlem 8198 . . . . . . 7  |-  ( ( if ( u  e. 
R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2313, 22dedth 3261 . . . . . 6  |-  ( u  e.  R.  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2410, 23mpcom 32 . . . . 5  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2524ex 420 . . . 4  |-  ( u  e.  A  ->  ( E. x  e.  R.  A. y  e.  A  y 
<R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2625exlimiv 1879 . . 3  |-  ( E. u  u  e.  A  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
271, 26sylbi 185 . 2  |-  ( A  =/=  (/)  ->  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2827imp 415 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 356   E.wex 1456    = wceq 1531    e. wcel 1533   {cab 2087    =/= wne 2218   A.wral 2311   E.wrex 2312    C_ wss 2830   (/)c0 3110   ifcif 3220   <.cop 3297   class class class wbr 3630  (class class class)co 5404   [cec 6157   1Pc1p 7947    ~R cer 7953   R.cnr 7954   1Rc1r 7956    +R cplr 7958    <R cltr 7960
This theorem is referenced by:  axpre-sup  8256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1452  ax-6 1453  ax-7 1454  ax-gen 1455  ax-8 1535  ax-11 1536  ax-13 1537  ax-14 1538  ax-17 1540  ax-12o 1574  ax-10 1588  ax-9 1594  ax-4 1601  ax-16 1787  ax-ext 2082  ax-sep 3745  ax-nul 3753  ax-pow 3789  ax-pr 3813  ax-un 4105  ax-inf2 6869
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 901  df-3an 902  df-tru 1265  df-ex 1457  df-sb 1748  df-eu 1970  df-mo 1971  df-clab 2088  df-cleq 2093  df-clel 2096  df-ne 2220  df-ral 2315  df-rex 2316  df-reu 2317  df-rab 2318  df-v 2514  df-sbc 2688  df-csb 2770  df-dif 2833  df-un 2835  df-in 2837  df-ss 2841  df-pss 2843  df-nul 3111  df-if 3221  df-pw 3282  df-sn 3300  df-pr 3301  df-tp 3302  df-op 3303  df-uni 3469  df-int 3503  df-iun 3546  df-br 3631  df-opab 3685  df-mpt 3686  df-tr 3718  df-eprel 3900  df-id 3904  df-po 3909  df-so 3910  df-fr 3947  df-we 3949  df-ord 3990  df-on 3991  df-lim 3992  df-suc 3993  df-om 4268  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-fun 4322  df-fn 4323  df-f 4324  df-f1 4325  df-fo 4326  df-f1o 4327  df-fv 4328  df-ov 5407  df-oprab 5408  df-mpt2 5409  df-1st 5658  df-2nd 5659  df-recs 5887  df-rdg 5922  df-1o 5978  df-oadd 5982  df-omul 5983  df-er 6159  df-ec 6161  df-qs 6165  df-ni 7961  df-pli 7962  df-mi 7963  df-lti 7964  df-plpq 7997  df-mpq 7998  df-ltpq 7999  df-enq 8000  df-nq 8001  df-erq 8002  df-plq 8003  df-mq 8004  df-1nq 8005  df-rq 8006  df-ltnq 8007  df-np 8070  df-1p 8071  df-plp 8072  df-mp 8073  df-ltp 8074  df-plpr 8144  df-mpr 8145  df-enr 8146  df-nr 8147  df-plr 8148  df-mr 8149  df-ltr 8150  df-0r 8151  df-1r 8152  df-m1r 8153
  Copyright terms: Public domain W3C validator