MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Unicode version

Theorem supsr 8702
Description: A non-empty, bounded set of signed reals has a supremum. (Cotributed by Mario Carneiro, 15-Jun-2013.) (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supsr
StepHypRef Expression
1 n0 3439 . . 3  |-  ( A  =/=  (/)  <->  E. u  u  e.  A )
2 ltrelsr 8661 . . . . . . . . . . . . 13  |-  <R  C_  ( R.  X.  R. )
32brel 4725 . . . . . . . . . . . 12  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
43simpld 447 . . . . . . . . . . 11  |-  ( y 
<R  x  ->  y  e. 
R. )
54ralimi 2593 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
6 dfss3 3145 . . . . . . . . . 10  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
75, 6sylibr 205 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
87sseld 3154 . . . . . . . 8  |-  ( A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
98rexlimivw 2638 . . . . . . 7  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
109impcom 421 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  u  e.  R. )
11 eleq1 2318 . . . . . . . . 9  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
u  e.  A  <->  if (
u  e.  R. ,  u ,  1R )  e.  A ) )
1211anbi1d 688 . . . . . . . 8  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  <->  ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
) ) )
1312imbi1d 310 . . . . . . 7  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )  <->  ( ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) ) )
14 opeq1 3770 . . . . . . . . . . . 12  |-  ( v  =  w  ->  <. v ,  1P >.  =  <. w ,  1P >. )
15 eceq1 6664 . . . . . . . . . . . 12  |-  ( <.
v ,  1P >.  = 
<. w ,  1P >.  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1614, 15syl 17 . . . . . . . . . . 11  |-  ( v  =  w  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1716oveq2d 5808 . . . . . . . . . 10  |-  ( v  =  w  ->  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  =  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  ) )
1817eleq1d 2324 . . . . . . . . 9  |-  ( v  =  w  ->  (
( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A  <->  ( if ( u  e. 
R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A
) )
1918cbvabv 2377 . . . . . . . 8  |-  { v  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A }  =  {
w  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
20 1sr 8671 . . . . . . . . 9  |-  1R  e.  R.
2120elimel 3591 . . . . . . . 8  |-  if ( u  e.  R. ,  u ,  1R )  e.  R.
2219, 21supsrlem 8701 . . . . . . 7  |-  ( ( if ( u  e. 
R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2313, 22dedth 3580 . . . . . 6  |-  ( u  e.  R.  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2410, 23mpcom 34 . . . . 5  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2524ex 425 . . . 4  |-  ( u  e.  A  ->  ( E. x  e.  R.  A. y  e.  A  y 
<R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2625exlimiv 2024 . . 3  |-  ( E. u  u  e.  A  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
271, 26sylbi 189 . 2  |-  ( A  =/=  (/)  ->  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2827imp 420 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2244    =/= wne 2421   A.wral 2518   E.wrex 2519    C_ wss 3127   (/)c0 3430   ifcif 3539   <.cop 3617   class class class wbr 3997  (class class class)co 5792   [cec 6626   1Pc1p 8450    ~R cer 8456   R.cnr 8457   1Rc1r 8459    +R cplr 8461    <R cltr 8463
This theorem is referenced by:  axpre-sup  8759
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-omul 6452  df-er 6628  df-ec 6630  df-qs 6634  df-ni 8464  df-pli 8465  df-mi 8466  df-lti 8467  df-plpq 8500  df-mpq 8501  df-ltpq 8502  df-enq 8503  df-nq 8504  df-erq 8505  df-plq 8506  df-mq 8507  df-1nq 8508  df-rq 8509  df-ltnq 8510  df-np 8573  df-1p 8574  df-plp 8575  df-mp 8576  df-ltp 8577  df-plpr 8647  df-mpr 8648  df-enr 8649  df-nr 8650  df-plr 8651  df-mr 8652  df-ltr 8653  df-0r 8654  df-1r 8655  df-m1r 8656
  Copyright terms: Public domain W3C validator