MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Unicode version

Theorem sylow1 14877
Description: Sylow's first theorem. If  P ^ N is a prime power that divides the cardinality of  G, then  G has a supgroup with size  P ^ N. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
Assertion
Ref Expression
sylow1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Distinct variable groups:    g, N    g, X    g, G    P, g    ph, g

Proof of Theorem sylow1
StepHypRef Expression
1 sylow1.x . . 3  |-  X  =  ( Base `  G
)
2 sylow1.g . . 3  |-  ( ph  ->  G  e.  Grp )
3 sylow1.f . . 3  |-  ( ph  ->  X  e.  Fin )
4 sylow1.p . . 3  |-  ( ph  ->  P  e.  Prime )
5 sylow1.n . . 3  |-  ( ph  ->  N  e.  NN0 )
6 sylow1.d . . 3  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
7 eqid 2258 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
8 eqid 2258 . . 3  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
9 oveq2 5800 . . . . . . 7  |-  ( s  =  z  ->  (
u ( +g  `  G
) s )  =  ( u ( +g  `  G ) z ) )
109cbvmptv 4085 . . . . . 6  |-  ( s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( u ( +g  `  G ) z ) )
11 oveq1 5799 . . . . . . 7  |-  ( u  =  x  ->  (
u ( +g  `  G
) z )  =  ( x ( +g  `  G ) z ) )
1211mpteq2dv 4081 . . . . . 6  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u ( +g  `  G
) z ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1310, 12syl5eq 2302 . . . . 5  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1413rneqd 4894 . . . 4  |-  ( u  =  x  ->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) )  =  ran  ( 
z  e.  v  |->  ( x ( +g  `  G
) z ) ) )
15 mpteq1 4074 . . . . 5  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x ( +g  `  G
) z ) )  =  ( z  e.  y  |->  ( x ( +g  `  G ) z ) ) )
1615rneqd 4894 . . . 4  |-  ( v  =  y  ->  ran  (  z  e.  v  |->  ( x ( +g  `  G ) z ) )  =  ran  ( 
z  e.  y  |->  ( x ( +g  `  G
) z ) ) )
1714, 16cbvmpt2v 5860 . . 3  |-  ( u  e.  X ,  v  e.  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) )  =  ( x  e.  X , 
y  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  z  e.  y 
|->  ( x ( +g  `  G ) z ) ) )
18 preq12 3682 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  { a ,  b }  =  { x ,  y } )
1918sseq1d 3180 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( { a ,  b }  C_  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  <->  { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } ) )
20 oveq2 5800 . . . . . . 7  |-  ( a  =  x  ->  (
k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x ) )
21 id 21 . . . . . . 7  |-  ( b  =  y  ->  b  =  y )
2220, 21eqeqan12d 2273 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2322rexbidv 2539 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  E. k  e.  X  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2419, 23anbi12d 694 . . . 4  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( { a ,  b }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b )  <->  ( {
x ,  y } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) ) )
2524cbvopabv 4062 . . 3  |-  { <. a ,  b >.  |  ( { a ,  b }  C_  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) }
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 14874 . 2  |-  ( ph  ->  E. h  e.  {
s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  ( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
272adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  G  e.  Grp )
283adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  X  e.  Fin )
294adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  P  e.  Prime )
305adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  N  e.  NN0 )
316adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P ^ N
)  ||  ( # `  X
) )
32 simprl 735 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  h  e.  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) } )
33 eqid 2258 . . . . 5  |-  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }  =  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }
34 simprr 736 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 14876 . . . 4  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
3635expr 601 . . 3  |-  ( (
ph  /\  h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } )  ->  ( ( P  pCnt  ( # `  [
h ] { <. a ,  b >.  |  ( { a ,  b }  C_  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  ->  E. g  e.  (SubGrp `  G )
( # `  g )  =  ( P ^ N ) ) )
3736rexlimdva 2642 . 2  |-  ( ph  ->  ( E. h  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  ( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  ->  E. g  e.  (SubGrp `  G )
( # `  g )  =  ( P ^ N ) ) )
3826, 37mpd 16 1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2519   {crab 2522    C_ wss 3127   ~Pcpw 3599   {cpr 3615   class class class wbr 3997   {copab 4050    e. cmpt 4051   ran crn 4662   ` cfv 4673  (class class class)co 5792    e. cmpt2 5794   [cec 6626   Fincfn 6831    <_ cle 8836    - cmin 9005   NN0cn0 9933   ^cexp 11071   #chash 11304    || cdivides 12494   Primecprime 12721    pCnt cpc 12852   Basecbs 13111   +g cplusg 13171   Grpcgrp 14325  SubGrpcsubg 14578
This theorem is referenced by:  odcau  14878  slwhash  14898
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-ec 6630  df-qs 6634  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-q 10285  df-rp 10323  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-sum 12125  df-divides 12495  df-gcd 12649  df-prime 12722  df-pc 12853  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-0g 13367  df-mnd 14330  df-grp 14452  df-minusg 14453  df-subg 14581  df-eqg 14583  df-ga 14707
  Copyright terms: Public domain W3C validator