MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem3 Structured version   Unicode version

Theorem sylow1lem3 15236
Description: Lemma for sylow1 15239. One of the orbits of the group action has p-adic valuation less than the prime count of the set  S. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
sylow1lem.a  |-  .+  =  ( +g  `  G )
sylow1lem.s  |-  S  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
sylow1lem.m  |-  .(+)  =  ( x  e.  X , 
y  e.  S  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
sylow1lem3.1  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  S  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
sylow1lem3  |-  ( ph  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
Distinct variable groups:    g, s, x, y, z, w    S, g    x, w, y, z, S    g, N    w, s, N, x, y, z   
g, X, s, w, x, y, z    .+ , s, w, x, y, z    w,  .~ , z    .(+) , g, w, x, y, z    g, G, s, x, y, z    P, g, s, w, x, y, z    ph, x, y, z
Allowed substitution hints:    ph( w, g, s)    .+ ( g)    .(+) ( s)    .~ ( x, y, g, s)    S( s)    G( w)

Proof of Theorem sylow1lem3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 sylow1.p . . . . . 6  |-  ( ph  ->  P  e.  Prime )
2 sylow1.x . . . . . . . 8  |-  X  =  ( Base `  G
)
3 sylow1.g . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
4 sylow1.f . . . . . . . 8  |-  ( ph  ->  X  e.  Fin )
5 sylow1.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
6 sylow1.d . . . . . . . 8  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
7 sylow1lem.a . . . . . . . 8  |-  .+  =  ( +g  `  G )
8 sylow1lem.s . . . . . . . 8  |-  S  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
92, 3, 4, 1, 5, 6, 7, 8sylow1lem1 15234 . . . . . . 7  |-  ( ph  ->  ( ( # `  S
)  e.  NN  /\  ( P  pCnt  ( # `  S ) )  =  ( ( P  pCnt  (
# `  X )
)  -  N ) ) )
109simpld 447 . . . . . 6  |-  ( ph  ->  ( # `  S
)  e.  NN )
11 pcndvds 13241 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( # `
 S )  e.  NN )  ->  -.  ( P ^ ( ( P  pCnt  ( # `  S
) )  +  1 ) )  ||  ( # `
 S ) )
121, 10, 11syl2anc 644 . . . . 5  |-  ( ph  ->  -.  ( P ^
( ( P  pCnt  (
# `  S )
)  +  1 ) )  ||  ( # `  S ) )
139simprd 451 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  ( # `
 S ) )  =  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
1413oveq1d 6098 . . . . . . 7  |-  ( ph  ->  ( ( P  pCnt  (
# `  S )
)  +  1 )  =  ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 ) )
1514oveq2d 6099 . . . . . 6  |-  ( ph  ->  ( P ^ (
( P  pCnt  ( # `
 S ) )  +  1 ) )  =  ( P ^
( ( ( P 
pCnt  ( # `  X
) )  -  N
)  +  1 ) ) )
16 sylow1lem.m . . . . . . . . 9  |-  .(+)  =  ( x  e.  X , 
y  e.  S  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
172, 3, 4, 1, 5, 6, 7, 8, 16sylow1lem2 15235 . . . . . . . 8  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  S ) )
18 sylow1lem3.1 . . . . . . . . 9  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  S  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
1918, 2gaorber 15087 . . . . . . . 8  |-  (  .(+)  e.  ( G  GrpAct  S )  ->  .~  Er  S
)
2017, 19syl 16 . . . . . . 7  |-  ( ph  ->  .~  Er  S )
21 pwfi 7404 . . . . . . . . 9  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
224, 21sylib 190 . . . . . . . 8  |-  ( ph  ->  ~P X  e.  Fin )
23 ssrab2 3430 . . . . . . . . 9  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  C_  ~P X
248, 23eqsstri 3380 . . . . . . . 8  |-  S  C_  ~P X
25 ssfi 7331 . . . . . . . 8  |-  ( ( ~P X  e.  Fin  /\  S  C_  ~P X
)  ->  S  e.  Fin )
2622, 24, 25sylancl 645 . . . . . . 7  |-  ( ph  ->  S  e.  Fin )
2720, 26qshash 12608 . . . . . 6  |-  ( ph  ->  ( # `  S
)  =  sum_ z  e.  ( S /.  .~  ) ( # `  z
) )
2815, 27breq12d 4227 . . . . 5  |-  ( ph  ->  ( ( P ^
( ( P  pCnt  (
# `  S )
)  +  1 ) )  ||  ( # `  S )  <->  ( P ^ ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 ) )  ||  sum_ z  e.  ( S /.  .~  ) ( # `  z
) ) )
2912, 28mtbid 293 . . . 4  |-  ( ph  ->  -.  ( P ^
( ( ( P 
pCnt  ( # `  X
) )  -  N
)  +  1 ) )  ||  sum_ z  e.  ( S /.  .~  ) ( # `  z
) )
30 pwfi 7404 . . . . . . . 8  |-  ( S  e.  Fin  <->  ~P S  e.  Fin )
3126, 30sylib 190 . . . . . . 7  |-  ( ph  ->  ~P S  e.  Fin )
3220qsss 6967 . . . . . . 7  |-  ( ph  ->  ( S /.  .~  )  C_  ~P S )
33 ssfi 7331 . . . . . . 7  |-  ( ( ~P S  e.  Fin  /\  ( S /.  .~  )  C_  ~P S )  ->  ( S /.  .~  )  e.  Fin )
3431, 32, 33syl2anc 644 . . . . . 6  |-  ( ph  ->  ( S /.  .~  )  e.  Fin )
3534adantr 453 . . . . 5  |-  ( (
ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) )  ->  ( S /.  .~  )  e. 
Fin )
36 prmnn 13084 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
371, 36syl 16 . . . . . . . 8  |-  ( ph  ->  P  e.  NN )
381, 10pccld 13226 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( # `
 S ) )  e.  NN0 )
3913, 38eqeltrrd 2513 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  (
# `  X )
)  -  N )  e.  NN0 )
40 peano2nn0 10262 . . . . . . . . 9  |-  ( ( ( P  pCnt  ( # `
 X ) )  -  N )  e. 
NN0  ->  ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 )  e.  NN0 )
4139, 40syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
pCnt  ( # `  X
) )  -  N
)  +  1 )  e.  NN0 )
4237, 41nnexpcld 11546 . . . . . . 7  |-  ( ph  ->  ( P ^ (
( ( P  pCnt  (
# `  X )
)  -  N )  +  1 ) )  e.  NN )
4342nnzd 10376 . . . . . 6  |-  ( ph  ->  ( P ^ (
( ( P  pCnt  (
# `  X )
)  -  N )  +  1 ) )  e.  ZZ )
4443adantr 453 . . . . 5  |-  ( (
ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) )  ->  ( P ^ ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 ) )  e.  ZZ )
45 erdm 6917 . . . . . . . . . 10  |-  (  .~  Er  S  ->  dom  .~  =  S )
4620, 45syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  .~  =  S )
47 elqsn0 6975 . . . . . . . . 9  |-  ( ( dom  .~  =  S  /\  z  e.  ( S /.  .~  )
)  ->  z  =/=  (/) )
4846, 47sylan 459 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  z  =/=  (/) )
4926adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  S  e.  Fin )
5032sselda 3350 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  z  e.  ~P S )
5150elpwid 3810 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  z  C_  S )
52 ssfi 7331 . . . . . . . . . 10  |-  ( ( S  e.  Fin  /\  z  C_  S )  -> 
z  e.  Fin )
5349, 51, 52syl2anc 644 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  z  e.  Fin )
54 hashnncl 11647 . . . . . . . . 9  |-  ( z  e.  Fin  ->  (
( # `  z )  e.  NN  <->  z  =/=  (/) ) )
5553, 54syl 16 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  ( ( # `
 z )  e.  NN  <->  z  =/=  (/) ) )
5648, 55mpbird 225 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( S /.  .~  )
)  ->  ( # `  z
)  e.  NN )
5756adantlr 697 . . . . . 6  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( # `  z
)  e.  NN )
5857nnzd 10376 . . . . 5  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( # `  z
)  e.  ZZ )
59 fveq2 5730 . . . . . . . . . . . . 13  |-  ( a  =  z  ->  ( # `
 a )  =  ( # `  z
) )
6059oveq2d 6099 . . . . . . . . . . . 12  |-  ( a  =  z  ->  ( P  pCnt  ( # `  a
) )  =  ( P  pCnt  ( # `  z
) ) )
6160breq1d 4224 . . . . . . . . . . 11  |-  ( a  =  z  ->  (
( P  pCnt  ( # `
 a ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  <->  ( P  pCnt  (
# `  z )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) ) )
6261notbid 287 . . . . . . . . . 10  |-  ( a  =  z  ->  ( -.  ( P  pCnt  ( # `
 a ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  <->  -.  ( P  pCnt  ( # `  z
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) ) )
6362rspccva 3053 . . . . . . . . 9  |-  ( ( A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `
 a ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  /\  z  e.  ( S /.  .~  )
)  ->  -.  ( P  pCnt  ( # `  z
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
6463adantll 696 . . . . . . . 8  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  -.  ( P  pCnt  ( # `  z
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
652grpbn0 14836 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  X  =/=  (/) )
663, 65syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  =/=  (/) )
67 hashnncl 11647 . . . . . . . . . . . . . . . 16  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
684, 67syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
6966, 68mpbird 225 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( # `  X
)  e.  NN )
701, 69pccld 13226 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  NN0 )
7170nn0zd 10375 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  ZZ )
725nn0zd 10375 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
7371, 72zsubcld 10382 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  pCnt  (
# `  X )
)  -  N )  e.  ZZ )
7473ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( ( P  pCnt  ( # `  X
) )  -  N
)  e.  ZZ )
7574zred 10377 . . . . . . . . 9  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( ( P  pCnt  ( # `  X
) )  -  N
)  e.  RR )
761ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  P  e.  Prime )
7776, 57pccld 13226 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( P  pCnt  ( # `  z
) )  e.  NN0 )
7877nn0zd 10375 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( P  pCnt  ( # `  z
) )  e.  ZZ )
7978zred 10377 . . . . . . . . 9  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( P  pCnt  ( # `  z
) )  e.  RR )
8075, 79ltnled 9222 . . . . . . . 8  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( (
( P  pCnt  ( # `
 X ) )  -  N )  < 
( P  pCnt  ( # `
 z ) )  <->  -.  ( P  pCnt  ( # `
 z ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )
8164, 80mpbird 225 . . . . . . 7  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( ( P  pCnt  ( # `  X
) )  -  N
)  <  ( P  pCnt  ( # `  z
) ) )
82 zltp1le 10327 . . . . . . . 8  |-  ( ( ( ( P  pCnt  (
# `  X )
)  -  N )  e.  ZZ  /\  ( P  pCnt  ( # `  z
) )  e.  ZZ )  ->  ( ( ( P  pCnt  ( # `  X
) )  -  N
)  <  ( P  pCnt  ( # `  z
) )  <->  ( (
( P  pCnt  ( # `
 X ) )  -  N )  +  1 )  <_  ( P  pCnt  ( # `  z
) ) ) )
8374, 78, 82syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( (
( P  pCnt  ( # `
 X ) )  -  N )  < 
( P  pCnt  ( # `
 z ) )  <-> 
( ( ( P 
pCnt  ( # `  X
) )  -  N
)  +  1 )  <_  ( P  pCnt  (
# `  z )
) ) )
8481, 83mpbid 203 . . . . . 6  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( (
( P  pCnt  ( # `
 X ) )  -  N )  +  1 )  <_  ( P  pCnt  ( # `  z
) ) )
8541ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( (
( P  pCnt  ( # `
 X ) )  -  N )  +  1 )  e.  NN0 )
86 pcdvdsb 13244 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 z )  e.  ZZ  /\  ( ( ( P  pCnt  ( # `
 X ) )  -  N )  +  1 )  e.  NN0 )  ->  ( ( ( ( P  pCnt  ( # `
 X ) )  -  N )  +  1 )  <_  ( P  pCnt  ( # `  z
) )  <->  ( P ^ ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 ) )  ||  ( # `  z ) ) )
8776, 58, 85, 86syl3anc 1185 . . . . . 6  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( (
( ( P  pCnt  (
# `  X )
)  -  N )  +  1 )  <_ 
( P  pCnt  ( # `
 z ) )  <-> 
( P ^ (
( ( P  pCnt  (
# `  X )
)  -  N )  +  1 ) ) 
||  ( # `  z
) ) )
8884, 87mpbid 203 . . . . 5  |-  ( ( ( ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  /\  z  e.  ( S /.  .~  )
)  ->  ( P ^ ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 ) )  ||  ( # `  z ) )
8935, 44, 58, 88fsumdvds 12895 . . . 4  |-  ( (
ph  /\  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) )  ->  ( P ^ ( ( ( P  pCnt  ( # `  X
) )  -  N
)  +  1 ) )  ||  sum_ z  e.  ( S /.  .~  ) ( # `  z
) )
9029, 89mtand 642 . . 3  |-  ( ph  ->  -.  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) )
91 dfrex2 2720 . . 3  |-  ( E. a  e.  ( S /.  .~  ) ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N )  <->  -.  A. a  e.  ( S /.  .~  )  -.  ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) )
9290, 91sylibr 205 . 2  |-  ( ph  ->  E. a  e.  ( S /.  .~  )
( P  pCnt  ( # `
 a ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
93 eqid 2438 . . . 4  |-  ( S /.  .~  )  =  ( S /.  .~  )
94 fveq2 5730 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( # `  [
z ]  .~  )  =  ( # `  a
) )
9594oveq2d 6099 . . . . . 6  |-  ( [ z ]  .~  =  a  ->  ( P  pCnt  (
# `  [ z ]  .~  ) )  =  ( P  pCnt  ( # `
 a ) ) )
9695breq1d 4224 . . . . 5  |-  ( [ z ]  .~  =  a  ->  ( ( P 
pCnt  ( # `  [
z ]  .~  )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
)  <->  ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) ) )
9796imbi1d 310 . . . 4  |-  ( [ z ]  .~  =  a  ->  ( ( ( P  pCnt  ( # `  [
z ]  .~  )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
)  ->  E. w  e.  S  ( P  pCnt  ( # `  [
w ]  .~  )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) )  <->  ( ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N )  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) ) ) )
98 eceq1 6943 . . . . . . . . . 10  |-  ( w  =  z  ->  [ w ]  .~  =  [ z ]  .~  )
9998fveq2d 5734 . . . . . . . . 9  |-  ( w  =  z  ->  ( # `
 [ w ]  .~  )  =  ( # `
 [ z ]  .~  ) )
10099oveq2d 6099 . . . . . . . 8  |-  ( w  =  z  ->  ( P  pCnt  ( # `  [
w ]  .~  )
)  =  ( P 
pCnt  ( # `  [
z ]  .~  )
) )
101100breq1d 4224 . . . . . . 7  |-  ( w  =  z  ->  (
( P  pCnt  ( # `
 [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N )  <->  ( P  pCnt  ( # `  [
z ]  .~  )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) ) )
102101rspcev 3054 . . . . . 6  |-  ( ( z  e.  S  /\  ( P  pCnt  ( # `  [ z ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
103102ex 425 . . . . 5  |-  ( z  e.  S  ->  (
( P  pCnt  ( # `
 [ z ]  .~  ) )  <_ 
( ( P  pCnt  (
# `  X )
)  -  N )  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) ) )
104103adantl 454 . . . 4  |-  ( (
ph  /\  z  e.  S )  ->  (
( P  pCnt  ( # `
 [ z ]  .~  ) )  <_ 
( ( P  pCnt  (
# `  X )
)  -  N )  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) ) )
10593, 97, 104ectocld 6973 . . 3  |-  ( (
ph  /\  a  e.  ( S /.  .~  )
)  ->  ( ( P  pCnt  ( # `  a
) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N )  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) ) )
106105rexlimdva 2832 . 2  |-  ( ph  ->  ( E. a  e.  ( S /.  .~  ) ( P  pCnt  (
# `  a )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
)  ->  E. w  e.  S  ( P  pCnt  ( # `  [
w ]  .~  )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) ) )
10792, 106mpd 15 1  |-  ( ph  ->  E. w  e.  S  ( P  pCnt  ( # `  [ w ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {cpr 3817   class class class wbr 4214   {copab 4267    e. cmpt 4268   dom cdm 4880   ran crn 4881   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085    Er wer 6904   [cec 6905   /.cqs 6906   Fincfn 7111   1c1 8993    + caddc 8995    < clt 9122    <_ cle 9123    - cmin 9293   NNcn 10002   NN0cn0 10223   ZZcz 10284   ^cexp 11384   #chash 11620   sum_csu 12481    || cdivides 12854   Primecprime 13081    pCnt cpc 13212   Basecbs 13471   +g cplusg 13531   Grpcgrp 14687    GrpAct cga 15068
This theorem is referenced by:  sylow1  15239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-q 10577  df-rp 10615  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-sum 12482  df-dvds 12855  df-gcd 13009  df-prm 13082  df-pc 13213  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-ga 15069
  Copyright terms: Public domain W3C validator