MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2 Unicode version

Theorem sylow2 14932
Description: Sylow's second theorem. See also sylow2b 14929 for the "hard" part of the proof. Any two Sylow  P-subgroups are conjugate to one another, and hence the same size, namely 
P ^ ( P 
pCnt  |  X  | 
) (see fislw 14931). (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2.x  |-  X  =  ( Base `  G
)
sylow2.f  |-  ( ph  ->  X  e.  Fin )
sylow2.h  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
sylow2.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow2.a  |-  .+  =  ( +g  `  G )
sylow2.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2  |-  ( ph  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x,  .-    x, g, 
.+    g, G, x    g, H, x    g, K, x    ph, g    g, X, x
Allowed substitution hints:    ph( x)    P( x, g)    .- ( g)

Proof of Theorem sylow2
StepHypRef Expression
1 sylow2.x . . 3  |-  X  =  ( Base `  G
)
2 sylow2.f . . 3  |-  ( ph  ->  X  e.  Fin )
3 sylow2.h . . . 4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
4 slwsubg 14916 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
53, 4syl 15 . . 3  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
6 sylow2.k . . . 4  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
7 slwsubg 14916 . . . 4  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
86, 7syl 15 . . 3  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
9 sylow2.a . . 3  |-  .+  =  ( +g  `  G )
10 eqid 2283 . . . . 5  |-  ( Gs  H )  =  ( Gs  H )
1110slwpgp 14919 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
123, 11syl 15 . . 3  |-  ( ph  ->  P pGrp  ( Gs  H ) )
131, 2, 6slwhash 14930 . . 3  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
14 sylow2.d . . 3  |-  .-  =  ( -g `  G )
151, 2, 5, 8, 9, 12, 13, 14sylow2b 14929 . 2  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
162adantr 451 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  X  e.  Fin )
178adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  K  e.  (SubGrp `  G ) )
18 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  g  e.  X
)
19 eqid 2283 . . . . . . . . 9  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  =  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )
201, 9, 14, 19conjsubg 14709 . . . . . . . 8  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  e.  (SubGrp `  G ) )
2117, 18, 20syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  (SubGrp `  G
) )
221subgss 14617 . . . . . . 7  |-  ( ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  C_  X
)
2321, 22syl 15 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) 
C_  X )
24 ssfi 7078 . . . . . 6  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  C_  X
)  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  Fin )
2516, 23, 24syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  e.  Fin )
26 simprr 733 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
271, 2, 3slwhash 14930 . . . . . . . . 9  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
2827, 13eqtr4d 2318 . . . . . . . 8  |-  ( ph  ->  ( # `  H
)  =  ( # `  K ) )
291subgss 14617 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
305, 29syl 15 . . . . . . . . . 10  |-  ( ph  ->  H  C_  X )
31 ssfi 7078 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
322, 30, 31syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  H  e.  Fin )
331subgss 14617 . . . . . . . . . . 11  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
348, 33syl 15 . . . . . . . . . 10  |-  ( ph  ->  K  C_  X )
35 ssfi 7078 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
362, 34, 35syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  K  e.  Fin )
37 hashen 11341 . . . . . . . . 9  |-  ( ( H  e.  Fin  /\  K  e.  Fin )  ->  ( ( # `  H
)  =  ( # `  K )  <->  H  ~~  K ) )
3832, 36, 37syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( ( # `  H
)  =  ( # `  K )  <->  H  ~~  K ) )
3928, 38mpbid 201 . . . . . . 7  |-  ( ph  ->  H  ~~  K )
4039adantr 451 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  ~~  K
)
411, 9, 14, 19conjsubgen 14710 . . . . . . 7  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  X )  ->  K  ~~  ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )
4217, 18, 41syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  K  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
43 entr 6908 . . . . . 6  |-  ( ( H  ~~  K  /\  K  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )  ->  H  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4440, 42, 43syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  ~~  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
45 fisseneq 7069 . . . . 5  |-  ( ( ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )  e. 
Fin  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  /\  H  ~~  ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4625, 26, 44, 45syl3anc 1182 . . . 4  |-  ( (
ph  /\  ( g  e.  X  /\  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
4746expr 598 . . 3  |-  ( (
ph  /\  g  e.  X )  ->  ( H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  ->  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
4847reximdva 2655 . 2  |-  ( ph  ->  ( E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
4915, 48mpd 14 1  |-  ( ph  ->  E. g  e.  X  H  =  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   ran crn 4688   ` cfv 5220  (class class class)co 5819    ~~ cen 6855   Fincfn 6858   ^cexp 11099   #chash 11332    pCnt cpc 12884   Basecbs 13143   ↾s cress 13144   +g cplusg 13203   -gcsg 14360  SubGrpcsubg 14610   pGrp cpgp 14837   pSyl cslw 14838
This theorem is referenced by:  sylow3lem3  14935  sylow3lem6  14938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-q 10312  df-rp 10350  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-fac 11284  df-bc 11311  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-sum 12154  df-dvds 12527  df-gcd 12681  df-prm 12754  df-pc 12885  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-0g 13399  df-mnd 14362  df-submnd 14411  df-grp 14484  df-minusg 14485  df-sbg 14486  df-mulg 14487  df-subg 14613  df-eqg 14615  df-ghm 14676  df-ga 14739  df-od 14839  df-pgp 14841  df-slw 14842
  Copyright terms: Public domain W3C validator