MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Unicode version

Theorem sylow2b 14930
Description: Sylow's second theorem. Any  P-group  H is a subgroup of a conjugated  P-group  K of order  P ^ n  ||  ( # `  X
) with  n maximal. This is usually stated under the assumption that  K is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.hp  |-  ( ph  ->  P pGrp  ( Gs  H ) )
sylow2b.kn  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
sylow2b.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2b  |-  ( ph  ->  E. g  e.  X  H  C_  ran  (  x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x, g, G    g, K, x    .+ , g, x    ph, g    x,  .-    g, H, x    g, X, x
Allowed substitution hints:    ph( x)    P( x, g)    .- ( g)

Proof of Theorem sylow2b
Dummy variables  s  u  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.x . 2  |-  X  =  ( Base `  G
)
2 sylow2b.xf . 2  |-  ( ph  ->  X  e.  Fin )
3 sylow2b.h . 2  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
4 sylow2b.k . 2  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
5 sylow2b.a . 2  |-  .+  =  ( +g  `  G )
6 eqid 2284 . 2  |-  ( G ~QG  K )  =  ( G ~QG  K )
7 oveq2 5828 . . . . . 6  |-  ( s  =  z  ->  (
u  .+  s )  =  ( u  .+  z ) )
87cbvmptv 4112 . . . . 5  |-  ( s  e.  v  |->  ( u 
.+  s ) )  =  ( z  e.  v  |->  ( u  .+  z ) )
9 oveq1 5827 . . . . . 6  |-  ( u  =  x  ->  (
u  .+  z )  =  ( x  .+  z ) )
109mpteq2dv 4108 . . . . 5  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u  .+  z ) )  =  ( z  e.  v  |->  ( x 
.+  z ) ) )
118, 10syl5eq 2328 . . . 4  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u  .+  s ) )  =  ( z  e.  v  |->  ( x 
.+  z ) ) )
1211rneqd 4905 . . 3  |-  ( u  =  x  ->  ran  (  s  e.  v  |->  ( u  .+  s
) )  =  ran  (  z  e.  v  |->  ( x  .+  z
) ) )
13 mpteq1 4101 . . . 4  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x  .+  z ) )  =  ( z  e.  y  |->  ( x 
.+  z ) ) )
1413rneqd 4905 . . 3  |-  ( v  =  y  ->  ran  (  z  e.  v  |->  ( x  .+  z
) )  =  ran  (  z  e.  y  |->  ( x  .+  z
) ) )
1512, 14cbvmpt2v 5888 . 2  |-  ( u  e.  H ,  v  e.  ( X /. ( G ~QG  K ) )  |->  ran  (  s  e.  v 
|->  ( u  .+  s
) ) )  =  ( x  e.  H ,  y  e.  ( X /. ( G ~QG  K ) )  |->  ran  (  z  e.  y  |->  ( x 
.+  z ) ) )
16 sylow2b.hp . 2  |-  ( ph  ->  P pGrp  ( Gs  H ) )
17 sylow2b.kn . 2  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
18 sylow2b.d . 2  |-  .-  =  ( -g `  G )
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 14929 1  |-  ( ph  ->  E. g  e.  X  H  C_  ran  (  x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685   E.wrex 2545    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   ran crn 4689   ` cfv 5221  (class class class)co 5820    e. cmpt2 5822   /.cqs 6655   Fincfn 6859   ^cexp 11100   #chash 11333    pCnt cpc 12885   Basecbs 13144   ↾s cress 13145   +g cplusg 13204   -gcsg 14361  SubGrpcsubg 14611   ~QG cqg 14613   pGrp cpgp 14838
This theorem is referenced by:  slwhash  14931  sylow2  14933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-ec 6658  df-qs 6662  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313  df-rp 10351  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-sum 12155  df-dvds 12528  df-gcd 12682  df-prm 12755  df-pc 12886  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-0g 13400  df-mnd 14363  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-mulg 14488  df-subg 14614  df-eqg 14616  df-ga 14740  df-od 14840  df-pgp 14842
  Copyright terms: Public domain W3C validator