Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Unicode version

Theorem sylow2b 14936
 Description: Sylow's second theorem. Any -group is a subgroup of a conjugated -group of order with maximal. This is usually stated under the assumption that is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x
sylow2b.xf
sylow2b.h SubGrp
sylow2b.k SubGrp
sylow2b.a
sylow2b.hp pGrp s
sylow2b.kn
sylow2b.d
Assertion
Ref Expression
sylow2b
Distinct variable groups:   ,,   ,,   ,,   ,   ,   ,,   ,,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem sylow2b
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.x . 2
2 sylow2b.xf . 2
3 sylow2b.h . 2 SubGrp
4 sylow2b.k . 2 SubGrp
5 sylow2b.a . 2
6 eqid 2285 . 2 ~QG ~QG
7 oveq2 5868 . . . . . 6
87cbvmptv 4113 . . . . 5
9 oveq1 5867 . . . . . 6
109mpteq2dv 4109 . . . . 5
118, 10syl5eq 2329 . . . 4
1211rneqd 4908 . . 3
13 mpteq1 4102 . . . 4
1413rneqd 4908 . . 3
1512, 14cbvmpt2v 5928 . 2 ~QG ~QG
16 sylow2b.hp . 2 pGrp s
17 sylow2b.kn . 2
18 sylow2b.d . 2
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 14935 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1625   wcel 1686  wrex 2546   wss 3154   class class class wbr 4025   cmpt 4079   crn 4692  cfv 5257  (class class class)co 5860   cmpt2 5862  cqs 6661  cfn 6865  cexp 11106  chash 11339   cpc 12891  cbs 13150   ↾s cress 13151   cplusg 13210  csg 14367  SubGrpcsubg 14617   ~QG cqg 14619   pGrp cpgp 14844 This theorem is referenced by:  slwhash  14937  sylow2  14939 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-disj 3996  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-omul 6486  df-er 6662  df-ec 6664  df-qs 6668  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-acn 7577  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-q 10319  df-rp 10357  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-dvds 12534  df-gcd 12688  df-prm 12761  df-pc 12892  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-0g 13406  df-mnd 14369  df-submnd 14418  df-grp 14491  df-minusg 14492  df-sbg 14493  df-mulg 14494  df-subg 14620  df-eqg 14622  df-ga 14746  df-od 14846  df-pgp 14848
 Copyright terms: Public domain W3C validator