MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Unicode version

Theorem sylow2b 14861
Description: Sylow's second theorem. Any  P-group  H is a subgroup of a conjugated  P-group  K of order  P ^ n  ||  ( # `  X
) with  n maximal. This is usually stated under the assumption that  K is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.hp  |-  ( ph  ->  P pGrp  ( Gs  H ) )
sylow2b.kn  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
sylow2b.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2b  |-  ( ph  ->  E. g  e.  X  H  C_  ran  (  x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x, g, G    g, K, x    .+ , g, x    ph, g    x,  .-    g, H, x    g, X, x
Allowed substitution hints:    ph( x)    P( x, g)    .- ( g)

Proof of Theorem sylow2b
StepHypRef Expression
1 sylow2b.x . 2  |-  X  =  ( Base `  G
)
2 sylow2b.xf . 2  |-  ( ph  ->  X  e.  Fin )
3 sylow2b.h . 2  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
4 sylow2b.k . 2  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
5 sylow2b.a . 2  |-  .+  =  ( +g  `  G )
6 eqid 2256 . 2  |-  ( G ~QG  K )  =  ( G ~QG  K )
7 oveq2 5765 . . . . . 6  |-  ( s  =  z  ->  (
u  .+  s )  =  ( u  .+  z ) )
87cbvmptv 4051 . . . . 5  |-  ( s  e.  v  |->  ( u 
.+  s ) )  =  ( z  e.  v  |->  ( u  .+  z ) )
9 oveq1 5764 . . . . . 6  |-  ( u  =  x  ->  (
u  .+  z )  =  ( x  .+  z ) )
109mpteq2dv 4047 . . . . 5  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u  .+  z ) )  =  ( z  e.  v  |->  ( x 
.+  z ) ) )
118, 10syl5eq 2300 . . . 4  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u  .+  s ) )  =  ( z  e.  v  |->  ( x 
.+  z ) ) )
1211rneqd 4859 . . 3  |-  ( u  =  x  ->  ran  (  s  e.  v  |->  ( u  .+  s
) )  =  ran  (  z  e.  v  |->  ( x  .+  z
) ) )
13 mpteq1 4040 . . . 4  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x  .+  z ) )  =  ( z  e.  y  |->  ( x 
.+  z ) ) )
1413rneqd 4859 . . 3  |-  ( v  =  y  ->  ran  (  z  e.  v  |->  ( x  .+  z
) )  =  ran  (  z  e.  y  |->  ( x  .+  z
) ) )
1512, 14cbvmpt2v 5825 . 2  |-  ( u  e.  H ,  v  e.  ( X /. ( G ~QG  K ) )  |->  ran  (  s  e.  v 
|->  ( u  .+  s
) ) )  =  ( x  e.  H ,  y  e.  ( X /. ( G ~QG  K ) )  |->  ran  (  z  e.  y  |->  ( x 
.+  z ) ) )
16 sylow2b.hp . 2  |-  ( ph  ->  P pGrp  ( Gs  H ) )
17 sylow2b.kn . 2  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
18 sylow2b.d . 2  |-  .-  =  ( -g `  G )
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 14860 1  |-  ( ph  ->  E. g  e.  X  H  C_  ran  (  x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   E.wrex 2517    C_ wss 3094   class class class wbr 3963    e. cmpt 4017   ran crn 4627   ` cfv 4638  (class class class)co 5757    e. cmpt2 5759   /.cqs 6592   Fincfn 6796   ^cexp 11035   #chash 11268    pCnt cpc 12816   Basecbs 13075   ↾s cress 13076   +g cplusg 13135   -gcsg 14292  SubGrpcsubg 14542   ~QG cqg 14544   pGrp cpgp 14769
This theorem is referenced by:  slwhash  14862  sylow2  14864
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-disj 3935  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-ec 6595  df-qs 6599  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-acn 7508  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-n0 9898  df-z 9957  df-uz 10163  df-q 10249  df-rp 10287  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-sum 12089  df-divides 12459  df-gcd 12613  df-prime 12686  df-pc 12817  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-0g 13331  df-mnd 14294  df-submnd 14343  df-grp 14416  df-minusg 14417  df-sbg 14418  df-mulg 14419  df-subg 14545  df-eqg 14547  df-ga 14671  df-od 14771  df-pgp 14773
  Copyright terms: Public domain W3C validator