MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif1 Unicode version

Theorem symdif1 3435
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
symdif1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )

Proof of Theorem symdif1
StepHypRef Expression
1 difundir 3424 . 2  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
2 difin 3408 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 incom 3363 . . . . 5  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43difeq2i 3293 . . . 4  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  ( B  i^i  A ) )
5 difin 3408 . . . 4  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
64, 5eqtri 2305 . . 3  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
72, 6uneq12i 3329 . 2  |-  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \  B )  u.  ( B  \  A ) )
81, 7eqtr2i 2306 1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1624    \ cdif 3151    u. cun 3152    i^i cin 3153
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ral 2550  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161
  Copyright terms: Public domain W3C validator