MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif1 Unicode version

Theorem symdif1 3394
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
symdif1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )

Proof of Theorem symdif1
StepHypRef Expression
1 difundir 3383 . 2  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
2 difin 3367 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 incom 3322 . . . . 5  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43difeq2i 3252 . . . 4  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  ( B  i^i  A ) )
5 difin 3367 . . . 4  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
64, 5eqtri 2276 . . 3  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
72, 6uneq12i 3288 . 2  |-  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \  B )  u.  ( B  \  A ) )
81, 7eqtr2i 2277 1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1619    \ cdif 3110    u. cun 3111    i^i cin 3112
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ral 2521  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120
  Copyright terms: Public domain W3C validator