Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Structured version   Unicode version

Theorem tailfval 26403
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1  |-  X  =  dom  D
Assertion
Ref Expression
tailfval  |-  ( D  e.  DirRel  ->  ( tail `  D
)  =  ( x  e.  X  |->  ( D
" { x }
) ) )
Distinct variable groups:    x, D    x, X

Proof of Theorem tailfval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 uniexg 4708 . . . 4  |-  ( D  e.  DirRel  ->  U. D  e.  _V )
2 uniexg 4708 . . . 4  |-  ( U. D  e.  _V  ->  U.
U. D  e.  _V )
3 mptexg 5967 . . . 4  |-  ( U. U. D  e.  _V  ->  ( x  e.  U. U. D  |->  ( D " { x } ) )  e.  _V )
41, 2, 33syl 19 . . 3  |-  ( D  e.  DirRel  ->  ( x  e. 
U. U. D  |->  ( D
" { x }
) )  e.  _V )
5 unieq 4026 . . . . . 6  |-  ( d  =  D  ->  U. d  =  U. D )
65unieqd 4028 . . . . 5  |-  ( d  =  D  ->  U. U. d  =  U. U. D
)
7 imaeq1 5200 . . . . 5  |-  ( d  =  D  ->  (
d " { x } )  =  ( D " { x } ) )
86, 7mpteq12dv 4289 . . . 4  |-  ( d  =  D  ->  (
x  e.  U. U. d  |->  ( d " { x } ) )  =  ( x  e.  U. U. D  |->  ( D " {
x } ) ) )
9 df-tail 14678 . . . 4  |-  tail  =  ( d  e.  DirRel  |->  ( x  e.  U. U. d  |->  ( d " { x } ) ) )
108, 9fvmptg 5806 . . 3  |-  ( ( D  e.  DirRel  /\  (
x  e.  U. U. D  |->  ( D " { x } ) )  e.  _V )  ->  ( tail `  D
)  =  ( x  e.  U. U. D  |->  ( D " {
x } ) ) )
114, 10mpdan 651 . 2  |-  ( D  e.  DirRel  ->  ( tail `  D
)  =  ( x  e.  U. U. D  |->  ( D " {
x } ) ) )
12 tailfval.1 . . . 4  |-  X  =  dom  D
13 dirdm 14681 . . . 4  |-  ( D  e.  DirRel  ->  dom  D  =  U. U. D )
1412, 13syl5req 2483 . . 3  |-  ( D  e.  DirRel  ->  U. U. D  =  X )
1514mpteq1d 4292 . 2  |-  ( D  e.  DirRel  ->  ( x  e. 
U. U. D  |->  ( D
" { x }
) )  =  ( x  e.  X  |->  ( D " { x } ) ) )
1611, 15eqtrd 2470 1  |-  ( D  e.  DirRel  ->  ( tail `  D
)  =  ( x  e.  X  |->  ( D
" { x }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   _Vcvv 2958   {csn 3816   U.cuni 4017    e. cmpt 4268   dom cdm 4880   "cima 4883   ` cfv 5456   DirRelcdir 14675   tailctail 14676
This theorem is referenced by:  tailval  26404  tailf  26406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-dir 14677  df-tail 14678
  Copyright terms: Public domain W3C validator