Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocan Unicode version

Theorem tendocan 31310
Description: Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of [Crawley] p. 118. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendocan.b  |-  B  =  ( Base `  K
)
tendocan.h  |-  H  =  ( LHyp `  K
)
tendocan.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendocan.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendocan  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  =  V )

Proof of Theorem tendocan
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 simp1l 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  K  e.  HL )
2 simp1r 982 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  W  e.  H )
3 simp21 990 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
4 simp22 991 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  V  e.  E )
5 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp12 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) ) )
7 simp13l 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  F  e.  T )
8 simp13r 1073 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  F  =/=  (  _I  |`  B ) )
9 simp2 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  h  e.  T )
107, 8, 93jca 1134 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T
) )
11 simp3 959 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  h  =/=  (  _I  |`  B ) )
12 tendocan.b . . . . . 6  |-  B  =  ( Base `  K
)
13 tendocan.h . . . . . 6  |-  H  =  ( LHyp `  K
)
14 tendocan.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
15 eqid 2408 . . . . . 6  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
16 tendocan.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
1712, 13, 14, 15, 16cdlemj3 31309 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
185, 6, 10, 11, 17syl31anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
19183exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  (
h  e.  T  -> 
( h  =/=  (  _I  |`  B )  -> 
( U `  h
)  =  ( V `
 h ) ) ) )
2019ralrimiv 2752 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  A. h  e.  T  ( h  =/=  (  _I  |`  B )  ->  ( U `  h )  =  ( V `  h ) ) )
2112, 13, 14, 16tendoeq2 31260 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  A. h  e.  T  (
h  =/=  (  _I  |`  B )  ->  ( U `  h )  =  ( V `  h ) ) )  ->  U  =  V )
221, 2, 3, 4, 20, 21syl221anc 1195 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670    _I cid 4457    |` cres 4843   ` cfv 5417   Basecbs 13428   HLchlt 29837   LHypclh 30470   LTrncltrn 30587   trLctrl 30644   TEndoctendo 31238
This theorem is referenced by:  tendoid0  31311  tendo0mul  31312  tendo0mulr  31313  cdleml3N  31464  cdleml8  31469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-map 6983  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645  df-tendo 31241
  Copyright terms: Public domain W3C validator