Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Unicode version

Theorem tendoex 31611
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 31610. TODO: can this be used to shorten uses of cdlemk 31610? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l  |-  .<_  =  ( le `  K )
tendoex.h  |-  H  =  ( LHyp `  K
)
tendoex.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoex.r  |-  R  =  ( ( trL `  K
) `  W )
tendoex.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendoex  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  E. u  e.  E  ( u `  F )  =  N )
Distinct variable groups:    u, E    u, F    u, K    u, N    u, R    u, T    u, W
Allowed substitution hints:    H( u)    .<_ ( u)

Proof of Theorem tendoex
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1008 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  K  e.  HL )
2 hlop 29999 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
31, 2syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  K  e.  OP )
4 simpl1 960 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simpl2r 1011 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  N  e.  T )
6 eqid 2435 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
7 tendoex.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
8 tendoex.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
9 tendoex.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
106, 7, 8, 9trlcl 30800 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T
)  ->  ( R `  N )  e.  (
Base `  K )
)
114, 5, 10syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( R `  N )  e.  ( Base `  K
) )
12 simpr 448 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( R `  F )  e.  ( Atoms `  K )
)
13 simpl3 962 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( R `  N )  .<_  ( R `  F
) )
14 tendoex.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 eqid 2435 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
16 eqid 2435 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
176, 14, 15, 16leat 29930 . . . . . 6  |-  ( ( ( K  e.  OP  /\  ( R `  N
)  e.  ( Base `  K )  /\  ( R `  F )  e.  ( Atoms `  K )
)  /\  ( R `  N )  .<_  ( R `
 F ) )  ->  ( ( R `
 N )  =  ( R `  F
)  \/  ( R `
 N )  =  ( 0. `  K
) ) )
183, 11, 12, 13, 17syl31anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  (
( R `  N
)  =  ( R `
 F )  \/  ( R `  N
)  =  ( 0.
`  K ) ) )
19 simp3 959 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  ( R `  N )  .<_  ( R `  F
) )
20 breq2 4208 . . . . . . . . 9  |-  ( ( R `  F )  =  ( 0. `  K )  ->  (
( R `  N
)  .<_  ( R `  F )  <->  ( R `  N )  .<_  ( 0.
`  K ) ) )
2119, 20syl5ibcom 212 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  (
( R `  F
)  =  ( 0.
`  K )  -> 
( R `  N
)  .<_  ( 0. `  K ) ) )
2221imp 419 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( R `  N
)  .<_  ( 0. `  K ) )
23 simpl1l 1008 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  ->  K  e.  HL )
2423, 2syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  ->  K  e.  OP )
25 simpl1 960 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
26 simpl2r 1011 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  ->  N  e.  T )
2725, 26, 10syl2anc 643 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( R `  N
)  e.  ( Base `  K ) )
286, 14, 15ople0 29824 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  N )  e.  ( Base `  K
) )  ->  (
( R `  N
)  .<_  ( 0. `  K )  <->  ( R `  N )  =  ( 0. `  K ) ) )
2924, 27, 28syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( ( R `  N )  .<_  ( 0.
`  K )  <->  ( R `  N )  =  ( 0. `  K ) ) )
3022, 29mpbid 202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( R `  N
)  =  ( 0.
`  K ) )
3130olcd 383 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( ( R `  N )  =  ( R `  F )  \/  ( R `  N )  =  ( 0. `  K ) ) )
32 simp1 957 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
33 simp2l 983 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  F  e.  T )
3415, 16, 7, 8, 9trlator0 30807 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  ( Atoms `  K )  \/  ( R `  F
)  =  ( 0.
`  K ) ) )
3532, 33, 34syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  (
( R `  F
)  e.  ( Atoms `  K )  \/  ( R `  F )  =  ( 0. `  K ) ) )
3618, 31, 35mpjaodan 762 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  (
( R `  N
)  =  ( R `
 F )  \/  ( R `  N
)  =  ( 0.
`  K ) ) )
37363expa 1153 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  .<_  ( R `
 F ) )  ->  ( ( R `
 N )  =  ( R `  F
)  \/  ( R `
 N )  =  ( 0. `  K
) ) )
38 eqcom 2437 . . . . 5  |-  ( ( R `  N )  =  ( R `  F )  <->  ( R `  F )  =  ( R `  N ) )
39 tendoex.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
407, 8, 9, 39cdlemk 31610 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
41403expa 1153 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  F )  =  ( R `  N ) )  ->  E. u  e.  E  ( u `  F )  =  N )
4238, 41sylan2b 462 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( R `  F ) )  ->  E. u  e.  E  ( u `  F )  =  N )
43 eqid 2435 . . . . . . 7  |-  ( h  e.  T  |->  (  _I  |`  ( Base `  K
) ) )  =  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )
446, 7, 8, 39, 43tendo0cl 31426 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  e.  E )
4544ad2antrr 707 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  ( h  e.  T  |->  (  _I  |`  ( Base `  K
) ) )  e.  E )
46 simplrl 737 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  F  e.  T )
4743, 6tendo02 31423 . . . . . . 7  |-  ( F  e.  T  ->  (
( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `  F )  =  (  _I  |`  ( Base `  K ) ) )
4846, 47syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  ( (
h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `
 F )  =  (  _I  |`  ( Base `  K ) ) )
496, 15, 7, 8, 9trlid0b 30814 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T
)  ->  ( N  =  (  _I  |`  ( Base `  K ) )  <-> 
( R `  N
)  =  ( 0.
`  K ) ) )
5049adantrl 697 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T ) )  -> 
( N  =  (  _I  |`  ( Base `  K ) )  <->  ( R `  N )  =  ( 0. `  K ) ) )
5150biimpar 472 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  N  =  (  _I  |`  ( Base `  K ) ) )
5248, 51eqtr4d 2470 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  ( (
h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `
 F )  =  N )
53 fveq1 5718 . . . . . . 7  |-  ( u  =  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  ->  ( u `  F )  =  ( ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `  F ) )
5453eqeq1d 2443 . . . . . 6  |-  ( u  =  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  ->  ( (
u `  F )  =  N  <->  ( ( h  e.  T  |->  (  _I  |`  ( Base `  K
) ) ) `  F )  =  N ) )
5554rspcev 3044 . . . . 5  |-  ( ( ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  e.  E  /\  ( ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `  F )  =  N )  ->  E. u  e.  E  ( u `  F
)  =  N )
5645, 52, 55syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  E. u  e.  E  ( u `  F )  =  N )
5742, 56jaodan 761 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( ( R `  N )  =  ( R `  F )  \/  ( R `  N )  =  ( 0. `  K ) ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
5837, 57syldan 457 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  .<_  ( R `
 F ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
59583impa 1148 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  E. u  e.  E  ( u `  F )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698   class class class wbr 4204    e. cmpt 4258    _I cid 4485    |` cres 4871   ` cfv 5445   Basecbs 13457   lecple 13524   0.cp0 14454   OPcops 29809   Atomscatm 29900   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794   TEndoctendo 31388
This theorem is referenced by:  dva1dim  31621  dihjatcclem4  32058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795  df-tendo 31391
  Copyright terms: Public domain W3C validator