Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopltp Unicode version

Theorem tendopltp 31042
Description: Trace-preserving property of endomorphism sum operation  P, based on theorem trlco 30989. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 30989) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our  ( TEndo `  K
) `  W.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
tendopltp.l  |-  .<_  =  ( le `  K )
tendopltp.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
tendopltp  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  .<_  ( R `  F ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    R( t, f, s)    U( t, f, s)    E( f)    F( t, f, s)    H( t, f, s)    K( t, f, s)    .<_ ( t, f, s)    V( t, f, s)

Proof of Theorem tendopltp
StepHypRef Expression
1 eqid 2285 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 tendopltp.l . 2  |-  .<_  =  ( le `  K )
3 simp1l 979 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  K  e.  HL )
4 hllat 29626 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 15 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  K  e.  Lat )
6 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 tendopl.h . . . 4  |-  H  =  ( LHyp `  K
)
8 tendopl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
9 tendopl.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
10 tendopl.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
117, 8, 9, 10tendoplcl2 31040 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  e.  T )
12 tendopltp.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
131, 7, 8, 12trlcl 30426 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U P V ) `  F )  e.  T
)  ->  ( R `  ( ( U P V ) `  F
) )  e.  (
Base `  K )
)
146, 11, 13syl2anc 642 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  e.  ( Base `  K
) )
157, 8, 9tendocl 31029 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
16153adant2r 1177 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( U `  F )  e.  T )
171, 7, 8, 12trlcl 30426 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T
)  ->  ( R `  ( U `  F
) )  e.  (
Base `  K )
)
186, 16, 17syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  e.  ( Base `  K
) )
197, 8, 9tendocl 31029 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  F  e.  T
)  ->  ( V `  F )  e.  T
)
20193adant2l 1176 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( V `  F )  e.  T )
211, 7, 8, 12trlcl 30426 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V `  F )  e.  T
)  ->  ( R `  ( V `  F
) )  e.  (
Base `  K )
)
226, 20, 21syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( V `  F ) )  e.  ( Base `  K
) )
23 eqid 2285 . . . 4  |-  ( join `  K )  =  (
join `  K )
241, 23latjcl 14158 . . 3  |-  ( ( K  e.  Lat  /\  ( R `  ( U `
 F ) )  e.  ( Base `  K
)  /\  ( R `  ( V `  F
) )  e.  (
Base `  K )
)  ->  ( ( R `  ( U `  F ) ) (
join `  K )
( R `  ( V `  F )
) )  e.  (
Base `  K )
)
255, 18, 22, 24syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( R `  ( U `  F )
) ( join `  K
) ( R `  ( V `  F ) ) )  e.  (
Base `  K )
)
26 simp3 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  F  e.  T )
271, 7, 8, 12trlcl 30426 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
286, 26, 27syl2anc 642 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  F )  e.  ( Base `  K
) )
29 simp2l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  U  e.  E )
30 simp2r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  V  e.  E )
3110, 8tendopl2 31039 . . . . 5  |-  ( ( U  e.  E  /\  V  e.  E  /\  F  e.  T )  ->  ( ( U P V ) `  F
)  =  ( ( U `  F )  o.  ( V `  F ) ) )
3229, 30, 26, 31syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  =  ( ( U `
 F )  o.  ( V `  F
) ) )
3332fveq2d 5531 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  =  ( R `  (
( U `  F
)  o.  ( V `
 F ) ) ) )
342, 23, 7, 8, 12trlco 30989 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( V `  F
)  e.  T )  ->  ( R `  ( ( U `  F )  o.  ( V `  F )
) )  .<_  ( ( R `  ( U `
 F ) ) ( join `  K
) ( R `  ( V `  F ) ) ) )
356, 16, 20, 34syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U `  F )  o.  ( V `  F
) ) )  .<_  ( ( R `  ( U `  F ) ) ( join `  K
) ( R `  ( V `  F ) ) ) )
3633, 35eqbrtrd 4045 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  .<_  ( ( R `  ( U `  F ) ) ( join `  K
) ( R `  ( V `  F ) ) ) )
372, 7, 8, 12, 9tendotp 31023 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( R `  ( U `  F
) )  .<_  ( R `
 F ) )
38373adant2r 1177 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  .<_  ( R `  F ) )
392, 7, 8, 12, 9tendotp 31023 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  F  e.  T
)  ->  ( R `  ( V `  F
) )  .<_  ( R `
 F ) )
40393adant2l 1176 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( V `  F ) )  .<_  ( R `  F ) )
411, 2, 23latjle12 14170 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( R `  ( U `  F ) )  e.  ( Base `  K )  /\  ( R `  ( V `  F ) )  e.  ( Base `  K
)  /\  ( R `  F )  e.  (
Base `  K )
) )  ->  (
( ( R `  ( U `  F ) )  .<_  ( R `  F )  /\  ( R `  ( V `  F ) )  .<_  ( R `  F ) )  <->  ( ( R `
 ( U `  F ) ) (
join `  K )
( R `  ( V `  F )
) )  .<_  ( R `
 F ) ) )
425, 18, 22, 28, 41syl13anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( ( R `  ( U `  F ) )  .<_  ( R `  F )  /\  ( R `  ( V `  F ) )  .<_  ( R `  F ) )  <->  ( ( R `
 ( U `  F ) ) (
join `  K )
( R `  ( V `  F )
) )  .<_  ( R `
 F ) ) )
4338, 40, 42mpbi2and 887 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( R `  ( U `  F )
) ( join `  K
) ( R `  ( V `  F ) ) )  .<_  ( R `
 F ) )
441, 2, 5, 14, 25, 28, 36, 43lattrd 14166 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( R `  ( ( U P V ) `  F ) )  .<_  ( R `  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025    e. cmpt 4079    o. ccom 4695   ` cfv 5257  (class class class)co 5860    e. cmpt2 5862   Basecbs 13150   lecple 13217   joincjn 14080   Latclat 14153   HLchlt 29613   LHypclh 30246   LTrncltrn 30363   trLctrl 30420   TEndoctendo 31014
This theorem is referenced by:  tendoplcl  31043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-map 6776  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250  df-laut 30251  df-ldil 30366  df-ltrn 30367  df-trl 30421  df-tendo 31017
  Copyright terms: Public domain W3C validator