MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindes Unicode version

Theorem tfindes 4544
Description: Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction hypothesis for successors, and the third is the induction hypothesis for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindes.1  |-  [. (/)  /  x ]. ph
tfindes.2  |-  ( x  e.  On  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
tfindes.3  |-  ( Lim  y  ->  ( A. x  e.  y  ph  ->  [. y  /  x ]. ph ) )
Assertion
Ref Expression
tfindes  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfindes
StepHypRef Expression
1 dfsbcq 2923 . 2  |-  ( y  =  (/)  ->  ( [. y  /  x ]. ph  <->  [. (/)  /  x ]. ph ) )
2 dfsbcq 2923 . 2  |-  ( y  =  z  ->  ( [. y  /  x ]. ph  <->  [. z  /  x ]. ph ) )
3 dfsbcq 2923 . 2  |-  ( y  =  suc  z  -> 
( [. y  /  x ]. ph  <->  [. suc  z  /  x ]. ph ) )
4 sbceq2a 2932 . 2  |-  ( y  =  x  ->  ( [. y  /  x ]. ph  <->  ph ) )
5 tfindes.1 . 2  |-  [. (/)  /  x ]. ph
6 nfv 1629 . . . 4  |-  F/ x  z  e.  On
7 nfsbc1v 2940 . . . . 5  |-  F/ x [. z  /  x ]. ph
8 nfsbc1v 2940 . . . . 5  |-  F/ x [. suc  z  /  x ]. ph
97, 8nfim 1735 . . . 4  |-  F/ x
( [. z  /  x ]. ph  ->  [. suc  z  /  x ]. ph )
106, 9nfim 1735 . . 3  |-  F/ x
( z  e.  On  ->  ( [. z  /  x ]. ph  ->  [. suc  z  /  x ]. ph )
)
11 eleq1 2313 . . . 4  |-  ( x  =  z  ->  (
x  e.  On  <->  z  e.  On ) )
12 sbceq1a 2931 . . . . 5  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
13 suceq 4350 . . . . . 6  |-  ( x  =  z  ->  suc  x  =  suc  z )
14 dfsbcq 2923 . . . . . 6  |-  ( suc  x  =  suc  z  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  z  /  x ]. ph )
)
1513, 14syl 17 . . . . 5  |-  ( x  =  z  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  z  /  x ]. ph ) )
1612, 15imbi12d 313 . . . 4  |-  ( x  =  z  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  (
[. z  /  x ]. ph  ->  [. suc  z  /  x ]. ph )
) )
1711, 16imbi12d 313 . . 3  |-  ( x  =  z  ->  (
( x  e.  On  ->  ( ph  ->  [. suc  x  /  x ]. ph )
)  <->  ( z  e.  On  ->  ( [. z  /  x ]. ph  ->  [.
suc  z  /  x ]. ph ) ) ) )
18 tfindes.2 . . 3  |-  ( x  e.  On  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
1910, 17, 18chvar 1878 . 2  |-  ( z  e.  On  ->  ( [. z  /  x ]. ph  ->  [. suc  z  /  x ]. ph )
)
20 cbvralsv 2714 . . . 4  |-  ( A. x  e.  y  ph  <->  A. z  e.  y  [
z  /  x ] ph )
21 sbsbc 2925 . . . . 5  |-  ( [ z  /  x ] ph 
<-> 
[. z  /  x ]. ph )
2221ralbii 2531 . . . 4  |-  ( A. z  e.  y  [
z  /  x ] ph 
<-> 
A. z  e.  y 
[. z  /  x ]. ph )
2320, 22bitri 242 . . 3  |-  ( A. x  e.  y  ph  <->  A. z  e.  y  [. z  /  x ]. ph )
24 tfindes.3 . . 3  |-  ( Lim  y  ->  ( A. x  e.  y  ph  ->  [. y  /  x ]. ph ) )
2523, 24syl5bir 211 . 2  |-  ( Lim  y  ->  ( A. z  e.  y  [. z  /  x ]. ph  ->  [. y  /  x ]. ph ) )
261, 2, 3, 4, 5, 19, 25tfinds 4541 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    = wceq 1619    e. wcel 1621   [wsb 1882   A.wral 2509   [.wsbc 2921   (/)c0 3362   Oncon0 4285   Lim wlim 4286   suc csuc 4287
This theorem is referenced by:  tfinds2  4545
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291
  Copyright terms: Public domain W3C validator