MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds2 Unicode version

Theorem tfinds2 4829
Description: Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of [Suppes] p. 197. The wff  ta is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
tfinds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
tfinds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfinds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfinds2.4  |-  ( ta 
->  ps )
tfinds2.5  |-  ( y  e.  On  ->  ( ta  ->  ( ch  ->  th ) ) )
tfinds2.6  |-  ( Lim  x  ->  ( ta  ->  ( A. y  e.  x  ch  ->  ph )
) )
Assertion
Ref Expression
tfinds2  |-  ( x  e.  On  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem tfinds2
StepHypRef Expression
1 tfinds2.4 . . 3  |-  ( ta 
->  ps )
2 0ex 4326 . . . 4  |-  (/)  e.  _V
3 tfinds2.1 . . . . 5  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 308 . . . 4  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4sbcie 3182 . . 3  |-  ( [. (/)  /  x ]. ( ta 
->  ph )  <->  ( ta  ->  ps ) )
61, 5mpbir 201 . 2  |-  [. (/)  /  x ]. ( ta  ->  ph )
7 vex 2946 . . . . . 6  |-  x  e. 
_V
8 tfinds2.5 . . . . . . . 8  |-  ( y  e.  On  ->  ( ta  ->  ( ch  ->  th ) ) )
98a2d 24 . . . . . . 7  |-  ( y  e.  On  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
109sbcth 3162 . . . . . 6  |-  ( x  e.  _V  ->  [. x  /  y ]. (
y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) ) )
117, 10ax-mp 8 . . . . 5  |-  [. x  /  y ]. (
y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) )
12 sbcimg 3189 . . . . . 6  |-  ( x  e.  _V  ->  ( [. x  /  y ]. ( y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) )  <-> 
( [. x  /  y ]. y  e.  On  ->  [. x  /  y ]. ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) ) ) )
137, 12ax-mp 8 . . . . 5  |-  ( [. x  /  y ]. (
y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) )  <->  ( [. x  /  y ]. y  e.  On  ->  [. x  / 
y ]. ( ( ta 
->  ch )  ->  ( ta  ->  th ) ) ) )
1411, 13mpbi 200 . . . 4  |-  ( [. x  /  y ]. y  e.  On  ->  [. x  / 
y ]. ( ( ta 
->  ch )  ->  ( ta  ->  th ) ) )
15 sbcel1gv 3207 . . . . 5  |-  ( x  e.  _V  ->  ( [. x  /  y ]. y  e.  On  <->  x  e.  On ) )
167, 15ax-mp 8 . . . 4  |-  ( [. x  /  y ]. y  e.  On  <->  x  e.  On )
17 sbcimg 3189 . . . . 5  |-  ( x  e.  _V  ->  ( [. x  /  y ]. ( ( ta  ->  ch )  ->  ( ta  ->  th ) )  <->  ( [. x  /  y ]. ( ta  ->  ch )  ->  [. x  /  y ]. ( ta  ->  th )
) ) )
187, 17ax-mp 8 . . . 4  |-  ( [. x  /  y ]. (
( ta  ->  ch )  ->  ( ta  ->  th ) )  <->  ( [. x  /  y ]. ( ta  ->  ch )  ->  [. x  /  y ]. ( ta  ->  th )
) )
1914, 16, 183imtr3i 257 . . 3  |-  ( x  e.  On  ->  ( [. x  /  y ]. ( ta  ->  ch )  ->  [. x  /  y ]. ( ta  ->  th )
) )
20 tfinds2.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
2120bicomd 193 . . . . . 6  |-  ( x  =  y  ->  ( ch 
<-> 
ph ) )
2221equcoms 1693 . . . . 5  |-  ( y  =  x  ->  ( ch 
<-> 
ph ) )
2322imbi2d 308 . . . 4  |-  ( y  =  x  ->  (
( ta  ->  ch ) 
<->  ( ta  ->  ph )
) )
247, 23sbcie 3182 . . 3  |-  ( [. x  /  y ]. ( ta  ->  ch )  <->  ( ta  ->  ph ) )
25 vex 2946 . . . . . . 7  |-  y  e. 
_V
2625sucex 4777 . . . . . 6  |-  suc  y  e.  _V
27 tfinds2.3 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2827imbi2d 308 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
2926, 28sbcie 3182 . . . . 5  |-  ( [. suc  y  /  x ]. ( ta  ->  ph )  <->  ( ta  ->  th )
)
3029sbcbii 3203 . . . 4  |-  ( [. x  /  y ]. [. suc  y  /  x ]. ( ta  ->  ph )  <->  [. x  / 
y ]. ( ta  ->  th ) )
31 suceq 4633 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
3231sbcco2 3171 . . . 4  |-  ( [. x  /  y ]. [. suc  y  /  x ]. ( ta  ->  ph )  <->  [. suc  x  /  x ]. ( ta 
->  ph ) )
3330, 32bitr3i 243 . . 3  |-  ( [. x  /  y ]. ( ta  ->  th )  <->  [. suc  x  /  x ]. ( ta 
->  ph ) )
3419, 24, 333imtr3g 261 . 2  |-  ( x  e.  On  ->  (
( ta  ->  ph )  ->  [. suc  x  /  x ]. ( ta  ->  ph ) ) )
35 sbsbc 3152 . . . 4  |-  ( [ y  /  x ] A. y  e.  x  ( ta  ->  ch )  <->  [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )
)
3623sbralie 2932 . . . 4  |-  ( [ y  /  x ] A. y  e.  x  ( ta  ->  ch )  <->  A. x  e.  y  ( ta  ->  ph ) )
3735, 36bitr3i 243 . . 3  |-  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  <->  A. x  e.  y  ( ta  ->  ph ) )
38 r19.21v 2780 . . . . . . . 8  |-  ( A. y  e.  x  ( ta  ->  ch )  <->  ( ta  ->  A. y  e.  x  ch ) )
39 tfinds2.6 . . . . . . . . 9  |-  ( Lim  x  ->  ( ta  ->  ( A. y  e.  x  ch  ->  ph )
) )
4039a2d 24 . . . . . . . 8  |-  ( Lim  x  ->  ( ( ta  ->  A. y  e.  x  ch )  ->  ( ta 
->  ph ) ) )
4138, 40syl5bi 209 . . . . . . 7  |-  ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) )
4241sbcth 3162 . . . . . 6  |-  ( y  e.  _V  ->  [. y  /  x ]. ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) ) )
4325, 42ax-mp 8 . . . . 5  |-  [. y  /  x ]. ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) )
44 sbcimg 3189 . . . . . 6  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( Lim  x  -> 
( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) ) )  <-> 
( [. y  /  x ]. Lim  x  ->  [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) ) ) )
4525, 44ax-mp 8 . . . . 5  |-  ( [. y  /  x ]. ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) )  <->  ( [. y  /  x ]. Lim  x  ->  [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) ) ) )
4643, 45mpbi 200 . . . 4  |-  ( [. y  /  x ]. Lim  x  ->  [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) ) )
47 limeq 4580 . . . . 5  |-  ( x  =  y  ->  ( Lim  x  <->  Lim  y ) )
4825, 47sbcie 3182 . . . 4  |-  ( [. y  /  x ]. Lim  x 
<->  Lim  y )
49 sbcimg 3189 . . . . 5  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) )  <->  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  ->  [. y  /  x ]. ( ta  ->  ph )
) ) )
5025, 49ax-mp 8 . . . 4  |-  ( [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph )
)  <->  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  ->  [. y  /  x ]. ( ta 
->  ph ) ) )
5146, 48, 503imtr3i 257 . . 3  |-  ( Lim  y  ->  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  ->  [. y  /  x ]. ( ta  ->  ph )
) )
5237, 51syl5bir 210 . 2  |-  ( Lim  y  ->  ( A. x  e.  y  ( ta  ->  ph )  ->  [. y  /  x ]. ( ta 
->  ph ) ) )
536, 34, 52tfindes 4828 1  |-  ( x  e.  On  ->  ( ta  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652   [wsb 1658    e. wcel 1725   A.wral 2692   _Vcvv 2943   [.wsbc 3148   (/)c0 3615   Oncon0 4568   Lim wlim 4569   suc csuc 4570
This theorem is referenced by:  abianfplem  6701  inar1  8634  grur1a  8678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-tr 4290  df-eprel 4481  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574
  Copyright terms: Public domain W3C validator