MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg Unicode version

Theorem tfindsg 4799
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction hypothesis for successors, and the induction hypothesis for limit ordinals. The basis of this version is an arbitrary ordinal  B instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindsg.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
tfindsg.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfindsg.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfindsg.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfindsg.5  |-  ( B  e.  On  ->  ps )
tfindsg.6  |-  ( ( ( y  e.  On  /\  B  e.  On )  /\  B  C_  y
)  ->  ( ch  ->  th ) )
tfindsg.7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  C_  y  ->  ch )  ->  ph ) )
Assertion
Ref Expression
tfindsg  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  B  C_  A
)  ->  ta )
Distinct variable groups:    x, A    x, y, B    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem tfindsg
StepHypRef Expression
1 sseq2 3330 . . . . . . 7  |-  ( x  =  (/)  ->  ( B 
C_  x  <->  B  C_  (/) ) )
21adantl 453 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( B  C_  x  <->  B  C_  (/) ) )
3 eqeq2 2413 . . . . . . . 8  |-  ( B  =  (/)  ->  ( x  =  B  <->  x  =  (/) ) )
4 tfindsg.1 . . . . . . . 8  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
53, 4syl6bir 221 . . . . . . 7  |-  ( B  =  (/)  ->  ( x  =  (/)  ->  ( ph  <->  ps ) ) )
65imp 419 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( ph 
<->  ps ) )
72, 6imbi12d 312 . . . . 5  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
81imbi1d 309 . . . . . 6  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ph ) ) )
9 ss0 3618 . . . . . . . . 9  |-  ( B 
C_  (/)  ->  B  =  (/) )
109con3i 129 . . . . . . . 8  |-  ( -.  B  =  (/)  ->  -.  B  C_  (/) )
1110pm2.21d 100 . . . . . . 7  |-  ( -.  B  =  (/)  ->  ( B  C_  (/)  ->  ( ph  <->  ps ) ) )
1211pm5.74d 239 . . . . . 6  |-  ( -.  B  =  (/)  ->  (
( B  C_  (/)  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
138, 12sylan9bbr 682 . . . . 5  |-  ( ( -.  B  =  (/)  /\  x  =  (/) )  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
147, 13pm2.61ian 766 . . . 4  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ps ) ) )
1514imbi2d 308 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  (/)  ->  ps ) ) ) )
16 sseq2 3330 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
17 tfindsg.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1816, 17imbi12d 312 . . . 4  |-  ( x  =  y  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  y  ->  ch )
) )
1918imbi2d 308 . . 3  |-  ( x  =  y  ->  (
( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  y  ->  ch )
) ) )
20 sseq2 3330 . . . . 5  |-  ( x  =  suc  y  -> 
( B  C_  x  <->  B 
C_  suc  y )
)
21 tfindsg.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2220, 21imbi12d 312 . . . 4  |-  ( x  =  suc  y  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_ 
suc  y  ->  th )
) )
2322imbi2d 308 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <-> 
( B  e.  On  ->  ( B  C_  suc  y  ->  th ) ) ) )
24 sseq2 3330 . . . . 5  |-  ( x  =  A  ->  ( B  C_  x  <->  B  C_  A
) )
25 tfindsg.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2624, 25imbi12d 312 . . . 4  |-  ( x  =  A  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  A  ->  ta )
) )
2726imbi2d 308 . . 3  |-  ( x  =  A  ->  (
( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  A  ->  ta )
) ) )
28 tfindsg.5 . . . 4  |-  ( B  e.  On  ->  ps )
2928a1d 23 . . 3  |-  ( B  e.  On  ->  ( B  C_  (/)  ->  ps )
)
30 vex 2919 . . . . . . . . . . . . . 14  |-  y  e. 
_V
3130sucex 4750 . . . . . . . . . . . . 13  |-  suc  y  e.  _V
3231eqvinc 3023 . . . . . . . . . . . 12  |-  ( suc  y  =  B  <->  E. x
( x  =  suc  y  /\  x  =  B ) )
3328, 4syl5ibr 213 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( B  e.  On  ->  ph ) )
3421biimpd 199 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( ph  ->  th )
)
3533, 34sylan9r 640 . . . . . . . . . . . . 13  |-  ( ( x  =  suc  y  /\  x  =  B
)  ->  ( B  e.  On  ->  th )
)
3635exlimiv 1641 . . . . . . . . . . . 12  |-  ( E. x ( x  =  suc  y  /\  x  =  B )  ->  ( B  e.  On  ->  th ) )
3732, 36sylbi 188 . . . . . . . . . . 11  |-  ( suc  y  =  B  -> 
( B  e.  On  ->  th ) )
3837eqcoms 2407 . . . . . . . . . 10  |-  ( B  =  suc  y  -> 
( B  e.  On  ->  th ) )
3938imim2i 14 . . . . . . . . 9  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( B  C_  suc  y  ->  ( B  e.  On  ->  th )
) )
4039a1d 23 . . . . . . . 8  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  ( B  e.  On  ->  th )
) ) )
4140com4r 82 . . . . . . 7  |-  ( B  e.  On  ->  (
( B  C_  suc  y  ->  B  =  suc  y )  ->  (
( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
4241adantl 453 . . . . . 6  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  suc  y  ->  B  =  suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
43 df-ne 2569 . . . . . . . . 9  |-  ( B  =/=  suc  y  <->  -.  B  =  suc  y )
4443anbi2i 676 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  ( B  C_  suc  y  /\  -.  B  =  suc  y ) )
45 annim 415 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  -.  B  =  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
4644, 45bitri 241 . . . . . . 7  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
47 onsssuc 4628 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  B  e.  suc  y ) )
48 suceloni 4752 . . . . . . . . . . 11  |-  ( y  e.  On  ->  suc  y  e.  On )
49 onelpss 4581 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  suc  y  e.  On )  ->  ( B  e. 
suc  y  <->  ( B  C_ 
suc  y  /\  B  =/=  suc  y ) ) )
5048, 49sylan2 461 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  suc  y 
<->  ( B  C_  suc  y  /\  B  =/=  suc  y ) ) )
5147, 50bitrd 245 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
5251ancoms 440 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
53 tfindsg.6 . . . . . . . . . . . 12  |-  ( ( ( y  e.  On  /\  B  e.  On )  /\  B  C_  y
)  ->  ( ch  ->  th ) )
5453ex 424 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ch  ->  th )
) )
55 ax-1 5 . . . . . . . . . . 11  |-  ( th 
->  ( B  C_  suc  y  ->  th ) )
5654, 55syl8 67 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ch  ->  ( B  C_  suc  y  ->  th ) ) ) )
5756a2d 24 . . . . . . . . 9  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  y  ->  ( B  C_  suc  y  ->  th ) ) ) )
5857com23 74 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
5952, 58sylbird 227 . . . . . . 7  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  suc  y  /\  B  =/= 
suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6046, 59syl5bir 210 . . . . . 6  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( -.  ( B 
C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th )
) ) )
6142, 60pm2.61d 152 . . . . 5  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) )
6261ex 424 . . . 4  |-  ( y  e.  On  ->  ( B  e.  On  ->  ( ( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
6362a2d 24 . . 3  |-  ( y  e.  On  ->  (
( B  e.  On  ->  ( B  C_  y  ->  ch ) )  -> 
( B  e.  On  ->  ( B  C_  suc  y  ->  th ) ) ) )
64 pm2.27 37 . . . . . . . . 9  |-  ( B  e.  On  ->  (
( B  e.  On  ->  ( B  C_  y  ->  ch ) )  -> 
( B  C_  y  ->  ch ) ) )
6564ralimdv 2745 . . . . . . . 8  |-  ( B  e.  On  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  A. y  e.  x  ( B  C_  y  ->  ch ) ) )
6665ad2antlr 708 . . . . . . 7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch )
)  ->  A. y  e.  x  ( B  C_  y  ->  ch )
) )
67 tfindsg.7 . . . . . . 7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  C_  y  ->  ch )  ->  ph ) )
6866, 67syld 42 . . . . . 6  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch )
)  ->  ph ) )
6968exp31 588 . . . . 5  |-  ( Lim  x  ->  ( B  e.  On  ->  ( B  C_  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ph )
) ) )
7069com3l 77 . . . 4  |-  ( B  e.  On  ->  ( B  C_  x  ->  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ph )
) ) )
7170com4t 81 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ( B  e.  On  ->  ( B  C_  x  ->  ph ) ) ) )
7215, 19, 23, 27, 29, 63, 71tfinds 4798 . 2  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( B  C_  A  ->  ta ) ) )
7372imp31 422 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  B  C_  A
)  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666    C_ wss 3280   (/)c0 3588   Oncon0 4541   Lim wlim 4542   suc csuc 4543
This theorem is referenced by:  tfindsg2  4800  oaordi  6748  infensuc  7244  r1ordg  7660
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547
  Copyright terms: Public domain W3C validator