MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis Unicode version

Theorem tfis 4793
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number  x have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
tfis.1  |-  ( x  e.  On  ->  ( A. y  e.  x  [ y  /  x ] ph  ->  ph ) )
Assertion
Ref Expression
tfis  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfis
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3388 . . . . 5  |-  { x  e.  On  |  ph }  C_  On
2 nfcv 2540 . . . . . . 7  |-  F/_ x
z
3 nfrab1 2848 . . . . . . . . 9  |-  F/_ x { x  e.  On  |  ph }
42, 3nfss 3301 . . . . . . . 8  |-  F/ x  z  C_  { x  e.  On  |  ph }
53nfcri 2534 . . . . . . . 8  |-  F/ x  z  e.  { x  e.  On  |  ph }
64, 5nfim 1828 . . . . . . 7  |-  F/ x
( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
)
7 dfss3 3298 . . . . . . . . 9  |-  ( x 
C_  { x  e.  On  |  ph }  <->  A. y  e.  x  y  e.  { x  e.  On  |  ph }
)
8 sseq1 3329 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  C_  { x  e.  On  |  ph }  <->  z 
C_  { x  e.  On  |  ph }
) )
97, 8syl5bbr 251 . . . . . . . 8  |-  ( x  =  z  ->  ( A. y  e.  x  y  e.  { x  e.  On  |  ph }  <->  z 
C_  { x  e.  On  |  ph }
) )
10 rabid 2844 . . . . . . . . 9  |-  ( x  e.  { x  e.  On  |  ph }  <->  ( x  e.  On  /\  ph ) )
11 eleq1 2464 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  e.  { x  e.  On  |  ph }  <->  z  e.  { x  e.  On  |  ph }
) )
1210, 11syl5bbr 251 . . . . . . . 8  |-  ( x  =  z  ->  (
( x  e.  On  /\ 
ph )  <->  z  e.  { x  e.  On  |  ph } ) )
139, 12imbi12d 312 . . . . . . 7  |-  ( x  =  z  ->  (
( A. y  e.  x  y  e.  {
x  e.  On  |  ph }  ->  ( x  e.  On  /\  ph )
)  <->  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } ) ) )
14 sbequ 2109 . . . . . . . . . . . 12  |-  ( w  =  y  ->  ( [ w  /  x ] ph  <->  [ y  /  x ] ph ) )
15 nfcv 2540 . . . . . . . . . . . . 13  |-  F/_ x On
16 nfcv 2540 . . . . . . . . . . . . 13  |-  F/_ w On
17 nfv 1626 . . . . . . . . . . . . 13  |-  F/ w ph
18 nfs1v 2155 . . . . . . . . . . . . 13  |-  F/ x [ w  /  x ] ph
19 sbequ12 1940 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  ( ph 
<->  [ w  /  x ] ph ) )
2015, 16, 17, 18, 19cbvrab 2914 . . . . . . . . . . . 12  |-  { x  e.  On  |  ph }  =  { w  e.  On  |  [ w  /  x ] ph }
2114, 20elrab2 3054 . . . . . . . . . . 11  |-  ( y  e.  { x  e.  On  |  ph }  <->  ( y  e.  On  /\  [ y  /  x ] ph ) )
2221simprbi 451 . . . . . . . . . 10  |-  ( y  e.  { x  e.  On  |  ph }  ->  [ y  /  x ] ph )
2322ralimi 2741 . . . . . . . . 9  |-  ( A. y  e.  x  y  e.  { x  e.  On  |  ph }  ->  A. y  e.  x  [ y  /  x ] ph )
24 tfis.1 . . . . . . . . 9  |-  ( x  e.  On  ->  ( A. y  e.  x  [ y  /  x ] ph  ->  ph ) )
2523, 24syl5 30 . . . . . . . 8  |-  ( x  e.  On  ->  ( A. y  e.  x  y  e.  { x  e.  On  |  ph }  ->  ph ) )
2625anc2li 541 . . . . . . 7  |-  ( x  e.  On  ->  ( A. y  e.  x  y  e.  { x  e.  On  |  ph }  ->  ( x  e.  On  /\ 
ph ) ) )
272, 6, 13, 26vtoclgaf 2976 . . . . . 6  |-  ( z  e.  On  ->  (
z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )
2827rgen 2731 . . . . 5  |-  A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } )
29 tfi 4792 . . . . 5  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )  ->  { x  e.  On  |  ph }  =  On )
301, 28, 29mp2an 654 . . . 4  |-  { x  e.  On  |  ph }  =  On
3130eqcomi 2408 . . 3  |-  On  =  { x  e.  On  |  ph }
3231rabeq2i 2913 . 2  |-  ( x  e.  On  <->  ( x  e.  On  /\  ph )
)
3332simprbi 451 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649   [wsb 1655    e. wcel 1721   A.wral 2666   {crab 2670    C_ wss 3280   Oncon0 4541
This theorem is referenced by:  tfis2f  4794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545
  Copyright terms: Public domain W3C validator