Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfisg Unicode version

Theorem tfisg 24275
Description: A closed form of tfis 4661. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3271 . . . 4  |-  { x  e.  On  |  ph }  C_  On
2 dfss3 3183 . . . . . . . . 9  |-  ( z 
C_  { x  e.  On  |  ph }  <->  A. y  e.  z  y  e.  { x  e.  On  |  ph }
)
3 nfcv 2432 . . . . . . . . . . . 12  |-  F/_ x On
43elrabsf 3042 . . . . . . . . . . 11  |-  ( y  e.  { x  e.  On  |  ph }  <->  ( y  e.  On  /\  [. y  /  x ]. ph ) )
54simprbi 450 . . . . . . . . . 10  |-  ( y  e.  { x  e.  On  |  ph }  ->  [. y  /  x ]. ph )
65ralimi 2631 . . . . . . . . 9  |-  ( A. y  e.  z  y  e.  { x  e.  On  |  ph }  ->  A. y  e.  z  [. y  /  x ]. ph )
72, 6sylbi 187 . . . . . . . 8  |-  ( z 
C_  { x  e.  On  |  ph }  ->  A. y  e.  z 
[. y  /  x ]. ph )
8 nfcv 2432 . . . . . . . . . . . 12  |-  F/_ x
z
9 nfsbc1v 3023 . . . . . . . . . . . 12  |-  F/ x [. y  /  x ]. ph
108, 9nfral 2609 . . . . . . . . . . 11  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
11 nfsbc1v 3023 . . . . . . . . . . 11  |-  F/ x [. z  /  x ]. ph
1210, 11nfim 1781 . . . . . . . . . 10  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
13 raleq 2749 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
14 sbceq1a 3014 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14imbi12d 311 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1612, 15rspc 2891 . . . . . . . . 9  |-  ( z  e.  On  ->  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1716impcom 419 . . . . . . . 8  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) )
187, 17syl5 28 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  [. z  /  x ]. ph ) )
19 simpr 447 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  z  e.  On )
2018, 19jctild 527 . . . . . 6  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  ( z  e.  On  /\ 
[. z  /  x ]. ph ) ) )
213elrabsf 3042 . . . . . 6  |-  ( z  e.  { x  e.  On  |  ph }  <->  ( z  e.  On  /\  [. z  /  x ]. ph ) )
2220, 21syl6ibr 218 . . . . 5  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )
2322ralrimiva 2639 . . . 4  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } ) )
24 tfi 4660 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )  ->  { x  e.  On  |  ph }  =  On )
251, 23, 24sylancr 644 . . 3  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  { x  e.  On  |  ph }  =  On )
2625eqcomd 2301 . 2  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  On  =  { x  e.  On  |  ph } )
27 rabid2 2730 . 2  |-  ( On  =  { x  e.  On  |  ph }  <->  A. x  e.  On  ph )
2826, 27sylib 188 1  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   [.wsbc 3004    C_ wss 3165   Oncon0 4408
This theorem is referenced by:  soseq  24325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412
  Copyright terms: Public domain W3C validator