Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfisg Unicode version

Theorem tfisg 24204
Description: A closed form of tfis 4645. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3258 . . . 4  |-  { x  e.  On  |  ph }  C_  On
2 dfss3 3170 . . . . . . . . 9  |-  ( z 
C_  { x  e.  On  |  ph }  <->  A. y  e.  z  y  e.  { x  e.  On  |  ph }
)
3 nfcv 2419 . . . . . . . . . . . 12  |-  F/_ x On
43elrabsf 3029 . . . . . . . . . . 11  |-  ( y  e.  { x  e.  On  |  ph }  <->  ( y  e.  On  /\  [. y  /  x ]. ph ) )
54simprbi 450 . . . . . . . . . 10  |-  ( y  e.  { x  e.  On  |  ph }  ->  [. y  /  x ]. ph )
65ralimi 2618 . . . . . . . . 9  |-  ( A. y  e.  z  y  e.  { x  e.  On  |  ph }  ->  A. y  e.  z  [. y  /  x ]. ph )
72, 6sylbi 187 . . . . . . . 8  |-  ( z 
C_  { x  e.  On  |  ph }  ->  A. y  e.  z 
[. y  /  x ]. ph )
8 nfcv 2419 . . . . . . . . . . . 12  |-  F/_ x
z
9 nfsbc1v 3010 . . . . . . . . . . . 12  |-  F/ x [. y  /  x ]. ph
108, 9nfral 2596 . . . . . . . . . . 11  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
11 nfsbc1v 3010 . . . . . . . . . . 11  |-  F/ x [. z  /  x ]. ph
1210, 11nfim 1769 . . . . . . . . . 10  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
13 raleq 2736 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
14 sbceq1a 3001 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14imbi12d 311 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1612, 15rspc 2878 . . . . . . . . 9  |-  ( z  e.  On  ->  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1716impcom 419 . . . . . . . 8  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) )
187, 17syl5 28 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  [. z  /  x ]. ph ) )
19 simpr 447 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  z  e.  On )
2018, 19jctild 527 . . . . . 6  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  ( z  e.  On  /\ 
[. z  /  x ]. ph ) ) )
213elrabsf 3029 . . . . . 6  |-  ( z  e.  { x  e.  On  |  ph }  <->  ( z  e.  On  /\  [. z  /  x ]. ph ) )
2220, 21syl6ibr 218 . . . . 5  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )
2322ralrimiva 2626 . . . 4  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } ) )
24 tfi 4644 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )  ->  { x  e.  On  |  ph }  =  On )
251, 23, 24sylancr 644 . . 3  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  { x  e.  On  |  ph }  =  On )
2625eqcomd 2288 . 2  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  On  =  { x  e.  On  |  ph } )
27 rabid2 2717 . 2  |-  ( On  =  { x  e.  On  |  ph }  <->  A. x  e.  On  ph )
2826, 27sylib 188 1  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   [.wsbc 2991    C_ wss 3152   Oncon0 4392
This theorem is referenced by:  soseq  24254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396
  Copyright terms: Public domain W3C validator