Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfisg Structured version   Unicode version

Theorem tfisg 25481
Description: A closed form of tfis 4836. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3430 . . . 4  |-  { x  e.  On  |  ph }  C_  On
2 dfss3 3340 . . . . . . . . 9  |-  ( z 
C_  { x  e.  On  |  ph }  <->  A. y  e.  z  y  e.  { x  e.  On  |  ph }
)
3 nfcv 2574 . . . . . . . . . . . 12  |-  F/_ x On
43elrabsf 3201 . . . . . . . . . . 11  |-  ( y  e.  { x  e.  On  |  ph }  <->  ( y  e.  On  /\  [. y  /  x ]. ph ) )
54simprbi 452 . . . . . . . . . 10  |-  ( y  e.  { x  e.  On  |  ph }  ->  [. y  /  x ]. ph )
65ralimi 2783 . . . . . . . . 9  |-  ( A. y  e.  z  y  e.  { x  e.  On  |  ph }  ->  A. y  e.  z  [. y  /  x ]. ph )
72, 6sylbi 189 . . . . . . . 8  |-  ( z 
C_  { x  e.  On  |  ph }  ->  A. y  e.  z 
[. y  /  x ]. ph )
8 nfcv 2574 . . . . . . . . . . . 12  |-  F/_ x
z
9 nfsbc1v 3182 . . . . . . . . . . . 12  |-  F/ x [. y  /  x ]. ph
108, 9nfral 2761 . . . . . . . . . . 11  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
11 nfsbc1v 3182 . . . . . . . . . . 11  |-  F/ x [. z  /  x ]. ph
1210, 11nfim 1833 . . . . . . . . . 10  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
13 raleq 2906 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
14 sbceq1a 3173 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14imbi12d 313 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1612, 15rspc 3048 . . . . . . . . 9  |-  ( z  e.  On  ->  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1716impcom 421 . . . . . . . 8  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) )
187, 17syl5 31 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  [. z  /  x ]. ph ) )
19 simpr 449 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  z  e.  On )
2018, 19jctild 529 . . . . . 6  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  ( z  e.  On  /\ 
[. z  /  x ]. ph ) ) )
213elrabsf 3201 . . . . . 6  |-  ( z  e.  { x  e.  On  |  ph }  <->  ( z  e.  On  /\  [. z  /  x ]. ph ) )
2220, 21syl6ibr 220 . . . . 5  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )
2322ralrimiva 2791 . . . 4  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } ) )
24 tfi 4835 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )  ->  { x  e.  On  |  ph }  =  On )
251, 23, 24sylancr 646 . . 3  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  { x  e.  On  |  ph }  =  On )
2625eqcomd 2443 . 2  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  On  =  { x  e.  On  |  ph } )
27 rabid2 2887 . 2  |-  ( On  =  { x  e.  On  |  ph }  <->  A. x  e.  On  ph )
2826, 27sylib 190 1  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   {crab 2711   [.wsbc 3163    C_ wss 3322   Oncon0 4583
This theorem is referenced by:  soseq  25531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587
  Copyright terms: Public domain W3C validator