MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1 Unicode version

Theorem tfr1 6429
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class  G, normally a function, and define a class  A of all "acceptable" functions. The final function we're interested in is the union  F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr1  |-  F  Fn  On

Proof of Theorem tfr1
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem7 6415 . . 3  |-  Fun recs ( G )
31tfrlem14 6423 . . 3  |-  dom recs ( G )  =  On
4 df-fn 5274 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
52, 3, 4mpbir2an 886 . 2  |- recs ( G )  Fn  On
6 tfr.1 . . 3  |-  F  = recs ( G )
76fneq1i 5354 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
85, 7mpbir 200 1  |-  F  Fn  On
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632   {cab 2282   A.wral 2556   E.wrex 2557   Oncon0 4408   dom cdm 4705    |` cres 4707   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  recscrecs 6403
This theorem is referenced by:  tfr2  6430  tfr3  6431  recsfnon  6432  rdgfnon  6447  dfac8alem  7672  dfac12lem1  7785  dfac12lem2  7786  zorn2lem1  8139  zorn2lem2  8140  zorn2lem4  8142  zorn2lem5  8143  zorn2lem6  8144  zorn2lem7  8145  ttukeylem3  8154  ttukeylem5  8156  ttukeylem6  8157  dnnumch1  27244  dnnumch3lem  27246  dnnumch3  27247  aomclem6  27259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404
  Copyright terms: Public domain W3C validator