MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1 Unicode version

Theorem tfr1 6367
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class  G, normally a function, and define a class  A of all "acceptable" functions. The final function we're interested in is the union  F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr1  |-  F  Fn  On

Proof of Theorem tfr1
StepHypRef Expression
1 eqid 2256 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem7 6353 . . 3  |-  Fun recs ( G )
31tfrlem14 6361 . . 3  |-  dom recs ( G )  =  On
4 df-fn 4670 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
52, 3, 4mpbir2an 891 . 2  |- recs ( G )  Fn  On
6 tfr.1 . . 3  |-  F  = recs ( G )
76fneq1i 5262 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
85, 7mpbir 202 1  |-  F  Fn  On
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1619   {cab 2242   A.wral 2516   E.wrex 2517   Oncon0 4350   dom cdm 4647    |` cres 4649   Fun wfun 4653    Fn wfn 4654   ` cfv 4659  recscrecs 6341
This theorem is referenced by:  tfr2  6368  tfr3  6369  recsfnon  6370  rdgfnon  6385  dfac8alem  7610  dfac12lem1  7723  dfac12lem2  7724  zorn2lem1  8077  zorn2lem2  8078  zorn2lem4  8080  zorn2lem5  8081  zorn2lem6  8082  zorn2lem7  8083  ttukeylem3  8092  ttukeylem5  8094  ttukeylem6  8095  dnnumch1  26494  dnnumch3lem  26496  dnnumch3  26497  aomclem6  26509
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-suc 4356  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-recs 6342
  Copyright terms: Public domain W3C validator