MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem12 Unicode version

Theorem tfrlem12 6373
Description: Lemma for transfinite recursion. Show  C is an acceptable function. (Contributed by NM, 15-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem12  |-  (recs ( F )  e.  _V  ->  C  e.  A )
Distinct variable groups:    x, f,
y, C    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem12
StepHypRef Expression
1 tfrlem.1 . . . . . 6  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 6368 . . . . 5  |-  Ord  dom recs ( F )
32a1i 12 . . . 4  |-  (recs ( F )  e.  _V  ->  Ord  dom recs ( F
) )
4 dmexg 4927 . . . 4  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  _V )
5 elon2 4375 . . . 4  |-  ( dom recs
( F )  e.  On  <->  ( Ord  dom recs ( F )  /\  dom recs ( F )  e.  _V ) )
63, 4, 5sylanbrc 648 . . 3  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  On )
7 suceloni 4576 . . . 4  |-  ( dom recs
( F )  e.  On  ->  suc  dom recs ( F )  e.  On )
8 tfrlem.3 . . . . 5  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
91, 8tfrlem10 6371 . . . 4  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
101, 8tfrlem11 6372 . . . . . 6  |-  ( dom recs
( F )  e.  On  ->  ( z  e.  suc  dom recs ( F
)  ->  ( C `  z )  =  ( F `  ( C  |`  z ) ) ) )
1110ralrimiv 2600 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  A. z  e.  suc  dom recs ( F
) ( C `  z )  =  ( F `  ( C  |`  z ) ) )
12 fveq2 5458 . . . . . . 7  |-  ( z  =  y  ->  ( C `  z )  =  ( C `  y ) )
13 reseq2 4938 . . . . . . . 8  |-  ( z  =  y  ->  ( C  |`  z )  =  ( C  |`  y
) )
1413fveq2d 5462 . . . . . . 7  |-  ( z  =  y  ->  ( F `  ( C  |`  z ) )  =  ( F `  ( C  |`  y ) ) )
1512, 14eqeq12d 2272 . . . . . 6  |-  ( z  =  y  ->  (
( C `  z
)  =  ( F `
 ( C  |`  z ) )  <->  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
1615cbvralv 2739 . . . . 5  |-  ( A. z  e.  suc  dom recs ( F ) ( C `
 z )  =  ( F `  ( C  |`  z ) )  <->  A. y  e.  suc  dom recs
( F ) ( C `  y )  =  ( F `  ( C  |`  y ) ) )
1711, 16sylib 190 . . . 4  |-  ( dom recs
( F )  e.  On  ->  A. y  e.  suc  dom recs ( F
) ( C `  y )  =  ( F `  ( C  |`  y ) ) )
18 fneq2 5272 . . . . . 6  |-  ( x  =  suc  dom recs ( F )  ->  ( C  Fn  x  <->  C  Fn  suc  dom recs ( F ) ) )
19 raleq 2711 . . . . . 6  |-  ( x  =  suc  dom recs ( F )  ->  ( A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) )  <->  A. y  e.  suc  dom recs
( F ) ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
2018, 19anbi12d 694 . . . . 5  |-  ( x  =  suc  dom recs ( F )  ->  (
( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) )  <->  ( C  Fn  suc  dom recs ( F
)  /\  A. y  e.  suc  dom recs ( F
) ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
2120rcla4ev 2859 . . . 4  |-  ( ( suc  dom recs ( F
)  e.  On  /\  ( C  Fn  suc  dom recs
( F )  /\  A. y  e.  suc  dom recs ( F ) ( C `
 y )  =  ( F `  ( C  |`  y ) ) ) )  ->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
227, 9, 17, 21syl12anc 1185 . . 3  |-  ( dom recs
( F )  e.  On  ->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
236, 22syl 17 . 2  |-  (recs ( F )  e.  _V  ->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
24 snex 4188 . . . . 5  |-  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. }  e.  _V
25 unexg 4493 . . . . 5  |-  ( (recs ( F )  e. 
_V  /\  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. }  e.  _V )  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  e.  _V )
2624, 25mpan2 655 . . . 4  |-  (recs ( F )  e.  _V  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  e.  _V )
278, 26syl5eqel 2342 . . 3  |-  (recs ( F )  e.  _V  ->  C  e.  _V )
28 fneq1 5271 . . . . . 6  |-  ( f  =  C  ->  (
f  Fn  x  <->  C  Fn  x ) )
29 fveq1 5457 . . . . . . . 8  |-  ( f  =  C  ->  (
f `  y )  =  ( C `  y ) )
30 reseq1 4937 . . . . . . . . 9  |-  ( f  =  C  ->  (
f  |`  y )  =  ( C  |`  y
) )
3130fveq2d 5462 . . . . . . . 8  |-  ( f  =  C  ->  ( F `  ( f  |`  y ) )  =  ( F `  ( C  |`  y ) ) )
3229, 31eqeq12d 2272 . . . . . . 7  |-  ( f  =  C  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
3332ralbidv 2538 . . . . . 6  |-  ( f  =  C  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
3428, 33anbi12d 694 . . . . 5  |-  ( f  =  C  ->  (
( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <-> 
( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3534rexbidv 2539 . . . 4  |-  ( f  =  C  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3635, 1elab2g 2891 . . 3  |-  ( C  e.  _V  ->  ( C  e.  A  <->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3727, 36syl 17 . 2  |-  (recs ( F )  e.  _V  ->  ( C  e.  A  <->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3823, 37mpbird 225 1  |-  (recs ( F )  e.  _V  ->  C  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2244   A.wral 2518   E.wrex 2519   _Vcvv 2763    u. cun 3125   {csn 3614   <.cop 3617   Ord word 4363   Oncon0 4364   suc csuc 4366   dom cdm 4661    |` cres 4663    Fn wfn 4668   ` cfv 4673  recscrecs 6355
This theorem is referenced by:  tfrlem13  6374
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-suc 4370  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-fv 4689  df-recs 6356
  Copyright terms: Public domain W3C validator