MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem14 Unicode version

Theorem tfrlem14 6423
Description: Lemma for transfinite recursion. Assuming ax-rep 4147,  dom recs  e.  _V  <-> recs  e. 
_V, so since  dom recs is an ordinal, it must be equal to  On. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem14  |-  dom recs ( F )  =  On
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem14
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem13 6422 . . 3  |-  -. recs ( F )  e.  _V
31tfrlem7 6415 . . . 4  |-  Fun recs ( F )
4 funex 5759 . . . 4  |-  ( ( Fun recs ( F )  /\  dom recs ( F
)  e.  On )  -> recs ( F )  e.  _V )
53, 4mpan 651 . . 3  |-  ( dom recs
( F )  e.  On  -> recs ( F
)  e.  _V )
62, 5mto 167 . 2  |-  -.  dom recs ( F )  e.  On
71tfrlem8 6416 . . . 4  |-  Ord  dom recs ( F )
8 ordeleqon 4596 . . . 4  |-  ( Ord 
dom recs ( F )  <->  ( dom recs ( F )  e.  On  \/  dom recs ( F )  =  On ) )
97, 8mpbi 199 . . 3  |-  ( dom recs
( F )  e.  On  \/  dom recs ( F )  =  On )
109ori 364 . 2  |-  ( -. 
dom recs ( F )  e.  On  ->  dom recs ( F )  =  On )
116, 10ax-mp 8 1  |-  dom recs ( F )  =  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801   Ord word 4407   Oncon0 4408   dom cdm 4705    |` cres 4707   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  recscrecs 6403
This theorem is referenced by:  tfr1  6429
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404
  Copyright terms: Public domain W3C validator