MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem15 Structured version   Unicode version

Theorem tfrlem15 6653
Description: Lemma for transfinite recursion. Without assuming ax-rep 4320, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem15  |-  ( B  e.  On  ->  ( B  e.  dom recs ( F )  <->  (recs ( F )  |`  B )  e.  _V ) )
Distinct variable groups:    x, f,
y, B    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem15
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem9a 6647 . . 3  |-  ( B  e.  dom recs ( F
)  ->  (recs ( F )  |`  B )  e.  _V )
32adantl 453 . 2  |-  ( ( B  e.  On  /\  B  e.  dom recs ( F ) )  ->  (recs ( F )  |`  B )  e.  _V )
41tfrlem13 6651 . . . 4  |-  -. recs ( F )  e.  _V
5 simpr 448 . . . . 5  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  (recs ( F )  |`  B )  e.  _V )
6 resss 5170 . . . . . . . 8  |-  (recs ( F )  |`  B ) 
C_ recs ( F )
76a1i 11 . . . . . . 7  |-  ( dom recs
( F )  C_  B  ->  (recs ( F )  |`  B )  C_ recs
( F ) )
81tfrlem6 6643 . . . . . . . . 9  |-  Rel recs ( F )
9 resdm 5184 . . . . . . . . 9  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
108, 9ax-mp 8 . . . . . . . 8  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
11 ssres2 5173 . . . . . . . 8  |-  ( dom recs
( F )  C_  B  ->  (recs ( F )  |`  dom recs ( F ) )  C_  (recs ( F )  |`  B ) )
1210, 11syl5eqssr 3393 . . . . . . 7  |-  ( dom recs
( F )  C_  B  -> recs ( F ) 
C_  (recs ( F )  |`  B )
)
137, 12eqssd 3365 . . . . . 6  |-  ( dom recs
( F )  C_  B  ->  (recs ( F )  |`  B )  = recs ( F ) )
1413eleq1d 2502 . . . . 5  |-  ( dom recs
( F )  C_  B  ->  ( (recs ( F )  |`  B )  e.  _V  <-> recs ( F
)  e.  _V )
)
155, 14syl5ibcom 212 . . . 4  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  ( dom recs ( F )  C_  B  -> recs ( F )  e. 
_V ) )
164, 15mtoi 171 . . 3  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  -.  dom recs ( F )  C_  B )
171tfrlem8 6645 . . . 4  |-  Ord  dom recs ( F )
18 eloni 4591 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
1918adantr 452 . . . 4  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  Ord  B )
20 ordtri1 4614 . . . . 5  |-  ( ( Ord  dom recs ( F
)  /\  Ord  B )  ->  ( dom recs ( F )  C_  B  <->  -.  B  e.  dom recs ( F ) ) )
2120con2bid 320 . . . 4  |-  ( ( Ord  dom recs ( F
)  /\  Ord  B )  ->  ( B  e. 
dom recs ( F )  <->  -.  dom recs ( F )  C_  B
) )
2217, 19, 21sylancr 645 . . 3  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  ( B  e. 
dom recs ( F )  <->  -.  dom recs ( F )  C_  B
) )
2316, 22mpbird 224 . 2  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  B  e.  dom recs ( F ) )
243, 23impbida 806 1  |-  ( B  e.  On  ->  ( B  e.  dom recs ( F )  <->  (recs ( F )  |`  B )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   Ord word 4580   Oncon0 4581   dom cdm 4878    |` cres 4880   Rel wrel 4883    Fn wfn 5449   ` cfv 5454  recscrecs 6632
This theorem is referenced by:  tfrlem16  6654  tfr2b  6657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-fv 5462  df-recs 6633
  Copyright terms: Public domain W3C validator