MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Unicode version

Theorem tfrlem16 6425
Description: Lemma for finite recursion. Without assuming ax-rep 4147, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem16  |-  Lim  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem16
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 6416 . . 3  |-  Ord  dom recs ( F )
3 ordzsl 4652 . . 3  |-  ( Ord 
dom recs ( F )  <->  ( dom recs ( F )  =  (/)  \/ 
E. z  e.  On  dom recs ( F )  =  suc  z  \/  Lim  dom recs
( F ) ) )
42, 3mpbi 199 . 2  |-  ( dom recs
( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )
5 res0 4975 . . . . . . 7  |-  (recs ( F )  |`  (/) )  =  (/)
6 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
75, 6eqeltri 2366 . . . . . 6  |-  (recs ( F )  |`  (/) )  e. 
_V
8 0elon 4461 . . . . . . 7  |-  (/)  e.  On
91tfrlem15 6424 . . . . . . 7  |-  ( (/)  e.  On  ->  ( (/)  e.  dom recs ( F )  <->  (recs ( F )  |`  (/) )  e. 
_V ) )
108, 9ax-mp 8 . . . . . 6  |-  ( (/)  e.  dom recs ( F )  <-> 
(recs ( F )  |`  (/) )  e.  _V )
117, 10mpbir 200 . . . . 5  |-  (/)  e.  dom recs ( F )
12 n0i 3473 . . . . 5  |-  ( (/)  e.  dom recs ( F )  ->  -.  dom recs ( F )  =  (/) )
1311, 12ax-mp 8 . . . 4  |-  -.  dom recs ( F )  =  (/)
1413pm2.21i 123 . . 3  |-  ( dom recs
( F )  =  (/)  ->  Lim  dom recs ( F ) )
151tfrlem13 6422 . . . . 5  |-  -. recs ( F )  e.  _V
16 simpr 447 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  suc  z )
17 df-suc 4414 . . . . . . . . . 10  |-  suc  z  =  ( z  u. 
{ z } )
1816, 17syl6eq 2344 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  ( z  u.  {
z } ) )
1918reseq2d 4971 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  dom recs ( F ) )  =  (recs ( F )  |`  (
z  u.  { z } ) ) )
201tfrlem6 6414 . . . . . . . . 9  |-  Rel recs ( F )
21 resdm 5009 . . . . . . . . 9  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
2220, 21ax-mp 8 . . . . . . . 8  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
23 resundi 4985 . . . . . . . 8  |-  (recs ( F )  |`  (
z  u.  { z } ) )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )
2419, 22, 233eqtr3g 2351 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) ) )
25 vex 2804 . . . . . . . . . . 11  |-  z  e. 
_V
2625sucid 4487 . . . . . . . . . 10  |-  z  e. 
suc  z
2726, 16syl5eleqr 2383 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
z  e.  dom recs ( F ) )
281tfrlem9a 6418 . . . . . . . . 9  |-  ( z  e.  dom recs ( F
)  ->  (recs ( F )  |`  z
)  e.  _V )
2927, 28syl 15 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  z )  e.  _V )
30 snex 4232 . . . . . . . . 9  |-  { <. z ,  (recs ( F ) `  z )
>. }  e.  _V
311tfrlem7 6415 . . . . . . . . . 10  |-  Fun recs ( F )
32 funressn 5722 . . . . . . . . . 10  |-  ( Fun recs
( F )  -> 
(recs ( F )  |`  { z } ) 
C_  { <. z ,  (recs ( F ) `
 z ) >. } )
3331, 32ax-mp 8 . . . . . . . . 9  |-  (recs ( F )  |`  { z } )  C_  { <. z ,  (recs ( F ) `  z )
>. }
3430, 33ssexi 4175 . . . . . . . 8  |-  (recs ( F )  |`  { z } )  e.  _V
35 unexg 4537 . . . . . . . 8  |-  ( ( (recs ( F )  |`  z )  e.  _V  /\  (recs ( F )  |`  { z } )  e.  _V )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3629, 34, 35sylancl 643 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3724, 36eqeltrd 2370 . . . . . 6  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  e.  _V )
3837rexlimiva 2675 . . . . 5  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  -> recs ( F )  e.  _V )
3915, 38mto 167 . . . 4  |-  -.  E. z  e.  On  dom recs ( F )  =  suc  z
4039pm2.21i 123 . . 3  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  ->  Lim  dom recs ( F ) )
41 id 19 . . 3  |-  ( Lim 
dom recs ( F )  ->  Lim  dom recs ( F ) )
4214, 40, 413jaoi 1245 . 2  |-  ( ( dom recs ( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )  ->  Lim  dom recs
( F ) )
434, 42ax-mp 8 1  |-  Lim  dom recs ( F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    \/ w3o 933    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801    u. cun 3163    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410   dom cdm 4705    |` cres 4707   Rel wrel 4710   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  recscrecs 6403
This theorem is referenced by:  tfr1a  6426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404
  Copyright terms: Public domain W3C validator