MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Unicode version

Theorem tfrlem16 6640
Description: Lemma for finite recursion. Without assuming ax-rep 4307, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem16  |-  Lim  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem16
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 6631 . . 3  |-  Ord  dom recs ( F )
3 ordzsl 4811 . . 3  |-  ( Ord 
dom recs ( F )  <->  ( dom recs ( F )  =  (/)  \/ 
E. z  e.  On  dom recs ( F )  =  suc  z  \/  Lim  dom recs
( F ) ) )
42, 3mpbi 200 . 2  |-  ( dom recs
( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )
5 res0 5136 . . . . . . 7  |-  (recs ( F )  |`  (/) )  =  (/)
6 0ex 4326 . . . . . . 7  |-  (/)  e.  _V
75, 6eqeltri 2500 . . . . . 6  |-  (recs ( F )  |`  (/) )  e. 
_V
8 0elon 4621 . . . . . . 7  |-  (/)  e.  On
91tfrlem15 6639 . . . . . . 7  |-  ( (/)  e.  On  ->  ( (/)  e.  dom recs ( F )  <->  (recs ( F )  |`  (/) )  e. 
_V ) )
108, 9ax-mp 8 . . . . . 6  |-  ( (/)  e.  dom recs ( F )  <-> 
(recs ( F )  |`  (/) )  e.  _V )
117, 10mpbir 201 . . . . 5  |-  (/)  e.  dom recs ( F )
12 n0i 3620 . . . . 5  |-  ( (/)  e.  dom recs ( F )  ->  -.  dom recs ( F )  =  (/) )
1311, 12ax-mp 8 . . . 4  |-  -.  dom recs ( F )  =  (/)
1413pm2.21i 125 . . 3  |-  ( dom recs
( F )  =  (/)  ->  Lim  dom recs ( F ) )
151tfrlem13 6637 . . . . 5  |-  -. recs ( F )  e.  _V
16 simpr 448 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  suc  z )
17 df-suc 4574 . . . . . . . . . 10  |-  suc  z  =  ( z  u. 
{ z } )
1816, 17syl6eq 2478 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  ( z  u.  {
z } ) )
1918reseq2d 5132 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  dom recs ( F ) )  =  (recs ( F )  |`  (
z  u.  { z } ) ) )
201tfrlem6 6629 . . . . . . . . 9  |-  Rel recs ( F )
21 resdm 5170 . . . . . . . . 9  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
2220, 21ax-mp 8 . . . . . . . 8  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
23 resundi 5146 . . . . . . . 8  |-  (recs ( F )  |`  (
z  u.  { z } ) )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )
2419, 22, 233eqtr3g 2485 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) ) )
25 vex 2946 . . . . . . . . . . 11  |-  z  e. 
_V
2625sucid 4647 . . . . . . . . . 10  |-  z  e. 
suc  z
2726, 16syl5eleqr 2517 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
z  e.  dom recs ( F ) )
281tfrlem9a 6633 . . . . . . . . 9  |-  ( z  e.  dom recs ( F
)  ->  (recs ( F )  |`  z
)  e.  _V )
2927, 28syl 16 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  z )  e.  _V )
30 snex 4392 . . . . . . . . 9  |-  { <. z ,  (recs ( F ) `  z )
>. }  e.  _V
311tfrlem7 6630 . . . . . . . . . 10  |-  Fun recs ( F )
32 funressn 5905 . . . . . . . . . 10  |-  ( Fun recs
( F )  -> 
(recs ( F )  |`  { z } ) 
C_  { <. z ,  (recs ( F ) `
 z ) >. } )
3331, 32ax-mp 8 . . . . . . . . 9  |-  (recs ( F )  |`  { z } )  C_  { <. z ,  (recs ( F ) `  z )
>. }
3430, 33ssexi 4335 . . . . . . . 8  |-  (recs ( F )  |`  { z } )  e.  _V
35 unexg 4696 . . . . . . . 8  |-  ( ( (recs ( F )  |`  z )  e.  _V  /\  (recs ( F )  |`  { z } )  e.  _V )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3629, 34, 35sylancl 644 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3724, 36eqeltrd 2504 . . . . . 6  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  e.  _V )
3837rexlimiva 2812 . . . . 5  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  -> recs ( F )  e.  _V )
3915, 38mto 169 . . . 4  |-  -.  E. z  e.  On  dom recs ( F )  =  suc  z
4039pm2.21i 125 . . 3  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  ->  Lim  dom recs ( F ) )
41 id 20 . . 3  |-  ( Lim 
dom recs ( F )  ->  Lim  dom recs ( F ) )
4214, 40, 413jaoi 1247 . 2  |-  ( ( dom recs ( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )  ->  Lim  dom recs
( F ) )
434, 42ax-mp 8 1  |-  Lim  dom recs ( F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   {cab 2416   A.wral 2692   E.wrex 2693   _Vcvv 2943    u. cun 3305    C_ wss 3307   (/)c0 3615   {csn 3801   <.cop 3804   Ord word 4567   Oncon0 4568   Lim wlim 4569   suc csuc 4570   dom cdm 4864    |` cres 4866   Rel wrel 4869   Fun wfun 5434    Fn wfn 5435   ` cfv 5440  recscrecs 6618
This theorem is referenced by:  tfr1a  6641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-recs 6619
  Copyright terms: Public domain W3C validator