MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Unicode version

Theorem tfrlem16 6404
Description: Lemma for finite recursion. Without assuming ax-rep 4132, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem16  |-  Lim  dom recs ( F )
Distinct variable group:    x, f, y, F
Dummy variable  z is distinct from all other variables.
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem16
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 6395 . . 3  |-  Ord  dom recs ( F )
3 ordzsl 4635 . . 3  |-  ( Ord 
dom recs ( F )  <->  ( dom recs ( F )  =  (/)  \/ 
E. z  e.  On  dom recs ( F )  =  suc  z  \/  Lim  dom recs
( F ) ) )
42, 3mpbi 201 . 2  |-  ( dom recs
( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )
5 res0 4958 . . . . . . 7  |-  (recs ( F )  |`  (/) )  =  (/)
6 0ex 4151 . . . . . . 7  |-  (/)  e.  _V
75, 6eqeltri 2354 . . . . . 6  |-  (recs ( F )  |`  (/) )  e. 
_V
8 0elon 4444 . . . . . . 7  |-  (/)  e.  On
91tfrlem15 6403 . . . . . . 7  |-  ( (/)  e.  On  ->  ( (/)  e.  dom recs ( F )  <->  (recs ( F )  |`  (/) )  e. 
_V ) )
108, 9ax-mp 10 . . . . . 6  |-  ( (/)  e.  dom recs ( F )  <-> 
(recs ( F )  |`  (/) )  e.  _V )
117, 10mpbir 202 . . . . 5  |-  (/)  e.  dom recs ( F )
12 n0i 3461 . . . . 5  |-  ( (/)  e.  dom recs ( F )  ->  -.  dom recs ( F )  =  (/) )
1311, 12ax-mp 10 . . . 4  |-  -.  dom recs ( F )  =  (/)
1413pm2.21i 125 . . 3  |-  ( dom recs
( F )  =  (/)  ->  Lim  dom recs ( F ) )
151tfrlem13 6401 . . . . 5  |-  -. recs ( F )  e.  _V
16 simpr 449 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  suc  z )
17 df-suc 4397 . . . . . . . . . 10  |-  suc  z  =  ( z  u. 
{ z } )
1816, 17syl6eq 2332 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  ( z  u.  {
z } ) )
1918reseq2d 4954 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  dom recs ( F ) )  =  (recs ( F )  |`  (
z  u.  { z } ) ) )
201tfrlem6 6393 . . . . . . . . 9  |-  Rel recs ( F )
21 resdm 4992 . . . . . . . . 9  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
2220, 21ax-mp 10 . . . . . . . 8  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
23 resundi 4968 . . . . . . . 8  |-  (recs ( F )  |`  (
z  u.  { z } ) )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )
2419, 22, 233eqtr3g 2339 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) ) )
25 vex 2792 . . . . . . . . . . 11  |-  z  e. 
_V
2625sucid 4470 . . . . . . . . . 10  |-  z  e. 
suc  z
2726, 16syl5eleqr 2371 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
z  e.  dom recs ( F ) )
281tfrlem9a 6397 . . . . . . . . 9  |-  ( z  e.  dom recs ( F
)  ->  (recs ( F )  |`  z
)  e.  _V )
2927, 28syl 17 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  z )  e.  _V )
30 snex 4215 . . . . . . . . 9  |-  { <. z ,  (recs ( F ) `  z )
>. }  e.  _V
311tfrlem7 6394 . . . . . . . . . 10  |-  Fun recs ( F )
32 funressn 5667 . . . . . . . . . 10  |-  ( Fun recs
( F )  -> 
(recs ( F )  |`  { z } ) 
C_  { <. z ,  (recs ( F ) `
 z ) >. } )
3331, 32ax-mp 10 . . . . . . . . 9  |-  (recs ( F )  |`  { z } )  C_  { <. z ,  (recs ( F ) `  z )
>. }
3430, 33ssexi 4160 . . . . . . . 8  |-  (recs ( F )  |`  { z } )  e.  _V
35 unexg 4520 . . . . . . . 8  |-  ( ( (recs ( F )  |`  z )  e.  _V  /\  (recs ( F )  |`  { z } )  e.  _V )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3629, 34, 35sylancl 645 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3724, 36eqeltrd 2358 . . . . . 6  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  e.  _V )
3837rexlimiva 2663 . . . . 5  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  -> recs ( F )  e.  _V )
3915, 38mto 169 . . . 4  |-  -.  E. z  e.  On  dom recs ( F )  =  suc  z
4039pm2.21i 125 . . 3  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  ->  Lim  dom recs ( F ) )
41 id 21 . . 3  |-  ( Lim 
dom recs ( F )  ->  Lim  dom recs ( F ) )
4214, 40, 413jaoi 1247 . 2  |-  ( ( dom recs ( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )  ->  Lim  dom recs
( F ) )
434, 42ax-mp 10 1  |-  Lim  dom recs ( F )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178    /\ wa 360    \/ w3o 935    = wceq 1624    e. wcel 1685   {cab 2270   A.wral 2544   E.wrex 2545   _Vcvv 2789    u. cun 3151    C_ wss 3153   (/)c0 3456   {csn 3641   <.cop 3644   Ord word 4390   Oncon0 4391   Lim wlim 4392   suc csuc 4393   dom cdm 4688    |` cres 4690   Rel wrel 4693   Fun wfun 5215    Fn wfn 5216   ` cfv 5221  recscrecs 6382
This theorem is referenced by:  tfr1a  6405
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-recs 6383
  Copyright terms: Public domain W3C validator