MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem7 Unicode version

Theorem tfrlem7 6630
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem7  |-  Fun recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem7
Dummy variables  g  h  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem6 6629 . 2  |-  Rel recs ( F )
31recsfval 6628 . . . . . . . . 9  |- recs ( F )  =  U. A
43eleq2i 2494 . . . . . . . 8  |-  ( <.
x ,  u >.  e. recs
( F )  <->  <. x ,  u >.  e.  U. A
)
5 eluni 4005 . . . . . . . 8  |-  ( <.
x ,  u >.  e. 
U. A  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
64, 5bitri 241 . . . . . . 7  |-  ( <.
x ,  u >.  e. recs
( F )  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
73eleq2i 2494 . . . . . . . 8  |-  ( <.
x ,  v >.  e. recs ( F )  <->  <. x ,  v >.  e.  U. A
)
8 eluni 4005 . . . . . . . 8  |-  ( <.
x ,  v >.  e.  U. A  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
97, 8bitri 241 . . . . . . 7  |-  ( <.
x ,  v >.  e. recs ( F )  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
106, 9anbi12i 679 . . . . . 6  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <-> 
( E. g (
<. x ,  u >.  e.  g  /\  g  e.  A )  /\  E. h ( <. x ,  v >.  e.  h  /\  h  e.  A
) ) )
11 eeanv 1937 . . . . . 6  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( E. g ( <. x ,  u >.  e.  g  /\  g  e.  A
)  /\  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) ) )
1210, 11bitr4i 244 . . . . 5  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <->  E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) ) )
13 an4 798 . . . . . . . 8  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) ) )
14 ancom 438 . . . . . . . 8  |-  ( ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) )  <->  ( (
g  e.  A  /\  h  e.  A )  /\  ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) ) )
1513, 14bitri 241 . . . . . . 7  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( (
g  e.  A  /\  h  e.  A )  /\  ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) ) )
161tfrlem5 6627 . . . . . . . 8  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( <. x ,  u >.  e.  g  /\  <. x ,  v
>.  e.  h )  ->  u  =  v )
)
1716imp 419 . . . . . . 7  |-  ( ( ( g  e.  A  /\  h  e.  A
)  /\  ( <. x ,  u >.  e.  g  /\  <. x ,  v
>.  e.  h ) )  ->  u  =  v )
1815, 17sylbi 188 . . . . . 6  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
1918exlimivv 1645 . . . . 5  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2012, 19sylbi 188 . . . 4  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2120ax-gen 1555 . . 3  |-  A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2221gen2 1556 . 2  |-  A. x A. u A. v ( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v
>.  e. recs ( F ) )  ->  u  =  v )
23 dffun4 5452 . 2  |-  ( Fun recs
( F )  <->  ( Rel recs ( F )  /\  A. x A. u A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
) )
242, 22, 23mpbir2an 887 1  |-  Fun recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2416   A.wral 2692   E.wrex 2693   <.cop 3804   U.cuni 4002   Oncon0 4568    |` cres 4866   Rel wrel 4869   Fun wfun 5434    Fn wfn 5435   ` cfv 5440  recscrecs 6618
This theorem is referenced by:  tfrlem9  6632  tfrlem9a  6633  tfrlem10  6634  tfrlem14  6638  tfrlem16  6640  tfr1a  6641  tfr1  6644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-fv 5448  df-recs 6619
  Copyright terms: Public domain W3C validator