MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Unicode version

Theorem tgpsubcn 17767
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1 (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2  |-  J  =  ( TopOpen `  G )
tgpsubcn.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
tgpsubcn  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem tgpsubcn
StepHypRef Expression
1 eqid 2284 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2284 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2284 . . 3  |-  ( inv g `  G )  =  ( inv g `  G )
4 tgpsubcn.3 . . 3  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubfval 14518 . 2  |-  .-  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) ( ( inv g `  G ) `
 y ) ) )
6 tgpsubcn.2 . . 3  |-  J  =  ( TopOpen `  G )
7 tgptmd 17756 . . 3  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
86, 1tgptopon 17759 . . 3  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
98, 8cnmpt1st 17356 . . 3  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  x )  e.  ( ( J  tX  J )  Cn  J
) )
108, 8cnmpt2nd 17357 . . . 4  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  y )  e.  ( ( J  tX  J )  Cn  J
) )
116, 3tgpinv 17762 . . . 4  |-  ( G  e.  TopGrp  ->  ( inv g `  G )  e.  ( J  Cn  J ) )
128, 8, 10, 11cnmpt21f 17360 . . 3  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( ( inv g `  G ) `
 y ) )  e.  ( ( J 
tX  J )  Cn  J ) )
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 17765 . 2  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) ( ( inv g `  G ) `  y
) ) )  e.  ( ( J  tX  J )  Cn  J
) )
145, 13syl5eqel 2368 1  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1624    e. wcel 1685   ` cfv 5221  (class class class)co 5819    e. cmpt2 5821   Basecbs 13142   +g cplusg 13202   TopOpenctopn 13320   inv gcminusg 14357   -gcsg 14359    Cn ccn 16948    tX ctx 17249   TopGrpctgp 17748
This theorem is referenced by:  istgp2  17768  clssubg  17785  clsnsg  17786  tgphaus  17793  tgpt0  17795  divstgplem  17797
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-map 6769  df-topgen 13338  df-plusf 14362  df-sbg 14485  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cn 16951  df-tx 17251  df-tmd 17749  df-tgp 17750
  Copyright terms: Public domain W3C validator