Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpabl Unicode version

Theorem tgrpabl 31013
Description: The translation group is an Abelian group. Lemma G of [Crawley] p. 116. (Contributed by NM, 6-Jun-2013.)
Hypotheses
Ref Expression
tgrpgrp.h  |-  H  =  ( LHyp `  K
)
tgrpgrp.g  |-  G  =  ( ( TGrp `  K
) `  W )
Assertion
Ref Expression
tgrpabl  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  G  e.  Abel )

Proof of Theorem tgrpabl
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpgrp.h . . . 4  |-  H  =  ( LHyp `  K
)
2 eqid 2285 . . . 4  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
3 tgrpgrp.g . . . 4  |-  G  =  ( ( TGrp `  K
) `  W )
4 eqid 2285 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
51, 2, 3, 4tgrpbase 31008 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  G
)  =  ( (
LTrn `  K ) `  W ) )
65eqcomd 2290 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( LTrn `  K
) `  W )  =  ( Base `  G
) )
7 eqidd 2286 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  G
)  =  ( +g  `  G ) )
81, 3tgrpgrp 31012 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  G  e.  Grp )
91, 2ltrncom 31000 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )  /\  g  e.  (
( LTrn `  K ) `  W ) )  -> 
( f  o.  g
)  =  ( g  o.  f ) )
10 eqid 2285 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
111, 2, 3, 10tgrpov 31010 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  g  e.  (
( LTrn `  K ) `  W ) ) )  ->  ( f ( +g  `  G ) g )  =  ( f  o.  g ) )
12113expa 1151 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  g  e.  (
( LTrn `  K ) `  W ) ) )  ->  ( f ( +g  `  G ) g )  =  ( f  o.  g ) )
13123impb 1147 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )  /\  g  e.  (
( LTrn `  K ) `  W ) )  -> 
( f ( +g  `  G ) g )  =  ( f  o.  g ) )
141, 2, 3, 10tgrpov 31010 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H  /\  ( g  e.  ( ( LTrn `  K
) `  W )  /\  f  e.  (
( LTrn `  K ) `  W ) ) )  ->  ( g ( +g  `  G ) f )  =  ( g  o.  f ) )
15143expa 1151 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( g  e.  ( ( LTrn `  K
) `  W )  /\  f  e.  (
( LTrn `  K ) `  W ) ) )  ->  ( g ( +g  `  G ) f )  =  ( g  o.  f ) )
16153impb 1147 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  ( ( LTrn `  K
) `  W )  /\  f  e.  (
( LTrn `  K ) `  W ) )  -> 
( g ( +g  `  G ) f )  =  ( g  o.  f ) )
17163com23 1157 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )  /\  g  e.  (
( LTrn `  K ) `  W ) )  -> 
( g ( +g  `  G ) f )  =  ( g  o.  f ) )
189, 13, 173eqtr4d 2327 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )  /\  g  e.  (
( LTrn `  K ) `  W ) )  -> 
( f ( +g  `  G ) g )  =  ( g ( +g  `  G ) f ) )
196, 7, 8, 18isabld 15104 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  G  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    o. ccom 4695   ` cfv 5257  (class class class)co 5860   Basecbs 13150   +g cplusg 13210   Abelcabel 15092   HLchlt 29613   LHypclh 30246   LTrncltrn 30363   TGrpctgrp 31004
This theorem is referenced by:  dvaabl  31287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-n0 9968  df-z 10027  df-uz 10233  df-fz 10785  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-plusg 13223  df-0g 13406  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-mnd 14369  df-grp 14491  df-cmn 15093  df-abl 15094  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250  df-laut 30251  df-ldil 30366  df-ltrn 30367  df-trl 30421  df-tgrp 31005
  Copyright terms: Public domain W3C validator