Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpfset Structured version   Unicode version

Theorem tgrpfset 31639
Description: The translation group maps for a lattice  K. (Contributed by NM, 5-Jun-2013.)
Hypothesis
Ref Expression
tgrpset.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
tgrpfset  |-  ( K  e.  V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
Distinct variable groups:    w, H    f, g, w, K
Allowed substitution hints:    H( f, g)    V( w, f, g)

Proof of Theorem tgrpfset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2970 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5757 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 tgrpset.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2492 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5757 . . . . . . 7  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
65fveq1d 5759 . . . . . 6  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
76opeq2d 4015 . . . . 5  |-  ( k  =  K  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. )
8 eqidd 2443 . . . . . . 7  |-  ( k  =  K  ->  (
f  o.  g )  =  ( f  o.  g ) )
96, 6, 8mpt2eq123dv 6165 . . . . . 6  |-  ( k  =  K  ->  (
f  e.  ( (
LTrn `  k ) `  w ) ,  g  e.  ( ( LTrn `  k ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) ) )
109opeq2d 4015 . . . . 5  |-  ( k  =  K  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) ) >.
)
117, 10preq12d 3915 . . . 4  |-  ( k  =  K  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. }  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )
124, 11mpteq12dv 4312 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { <. (
Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. } )  =  ( w  e.  H  |->  {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
13 df-tgrp 31638 . . 3  |-  TGrp  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  {
<. ( Base `  ndx ) ,  ( ( LTrn `  k ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. } ) )
14 fvex 5771 . . . . 5  |-  ( LHyp `  K )  e.  _V
153, 14eqeltri 2512 . . . 4  |-  H  e. 
_V
1615mptex 5995 . . 3  |-  ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )  e.  _V
1712, 13, 16fvmpt 5835 . 2  |-  ( K  e.  _V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
181, 17syl 16 1  |-  ( K  e.  V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727   _Vcvv 2962   {cpr 3839   <.cop 3841    e. cmpt 4291    o. ccom 4911   ` cfv 5483    e. cmpt2 6112   ndxcnx 13497   Basecbs 13500   +g cplusg 13560   LHypclh 30879   LTrncltrn 30996   TGrpctgrp 31637
This theorem is referenced by:  tgrpset  31640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-oprab 6114  df-mpt2 6115  df-tgrp 31638
  Copyright terms: Public domain W3C validator