MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss3 Unicode version

Theorem tgss3 16720
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )

Proof of Theorem tgss3
StepHypRef Expression
1 bastg 16700 . . . 4  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
21adantr 451 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  B  C_  ( topGen `  B ) )
3 sstr2 3187 . . 3  |-  ( B 
C_  ( topGen `  B
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  ->  B  C_  ( topGen `  C ) ) )
42, 3syl 15 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  ->  B  C_  ( topGen `  C )
) )
5 fvex 5500 . . . 4  |-  ( topGen `  C )  e.  _V
6 tgss 16702 . . . 4  |-  ( ( ( topGen `  C )  e.  _V  /\  B  C_  ( topGen `  C )
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  C
) ) )
75, 6mpan 651 . . 3  |-  ( B 
C_  ( topGen `  C
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  C
) ) )
8 tgidm 16714 . . . . 5  |-  ( C  e.  W  ->  ( topGen `
 ( topGen `  C
) )  =  (
topGen `  C ) )
98adantl 452 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( topGen `  ( topGen `  C ) )  =  ( topGen `  C )
)
109sseq2d 3207 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  ( topGen `  C )
)  <->  ( topGen `  B
)  C_  ( topGen `  C ) ) )
117, 10syl5ib 210 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B  C_  ( topGen `
 C )  -> 
( topGen `  B )  C_  ( topGen `  C )
) )
124, 11impbid 183 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   _Vcvv 2789    C_ wss 3153   ` cfv 5221   topGenctg 13338
This theorem is referenced by:  tgss2  16721  2basgen  16724  isfne4b  25681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-topgen 13340
  Copyright terms: Public domain W3C validator