MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss3 Unicode version

Theorem tgss3 16941
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )

Proof of Theorem tgss3
StepHypRef Expression
1 bastg 16921 . . . 4  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
21adantr 451 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  B  C_  ( topGen `  B ) )
3 sstr2 3272 . . 3  |-  ( B 
C_  ( topGen `  B
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  ->  B  C_  ( topGen `  C ) ) )
42, 3syl 15 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  ->  B  C_  ( topGen `  C )
) )
5 fvex 5646 . . . 4  |-  ( topGen `  C )  e.  _V
6 tgss 16923 . . . 4  |-  ( ( ( topGen `  C )  e.  _V  /\  B  C_  ( topGen `  C )
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  C
) ) )
75, 6mpan 651 . . 3  |-  ( B 
C_  ( topGen `  C
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  C
) ) )
8 tgidm 16935 . . . . 5  |-  ( C  e.  W  ->  ( topGen `
 ( topGen `  C
) )  =  (
topGen `  C ) )
98adantl 452 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( topGen `  ( topGen `  C ) )  =  ( topGen `  C )
)
109sseq2d 3292 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  ( topGen `  C )
)  <->  ( topGen `  B
)  C_  ( topGen `  C ) ) )
117, 10syl5ib 210 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B  C_  ( topGen `
 C )  -> 
( topGen `  B )  C_  ( topGen `  C )
) )
124, 11impbid 183 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   _Vcvv 2873    C_ wss 3238   ` cfv 5358   topGenctg 13552
This theorem is referenced by:  tgss2  16942  2basgen  16945  isfne4b  25862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366  df-topgen 13554
  Copyright terms: Public domain W3C validator