MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval2 Unicode version

Theorem tgval2 17009
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 17022) that  ( topGen `  B ) is indeed a topology (on  U. B; see unitg 17020). (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Distinct variable groups:    x, y,
z, B    x, V, y, z

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 17008 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
2 inss1 3553 . . . . . . . . 9  |-  ( B  i^i  ~P x ) 
C_  B
32unissi 4030 . . . . . . . 8  |-  U. ( B  i^i  ~P x ) 
C_  U. B
43sseli 3336 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  ->  y  e.  U. B )
54pm4.71ri 615 . . . . . 6  |-  ( y  e.  U. ( B  i^i  ~P x )  <-> 
( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x
) ) )
65ralbii 2721 . . . . 5  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  A. y  e.  x  ( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) ) )
7 r19.26 2830 . . . . 5  |-  ( A. y  e.  x  (
y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
86, 7bitri 241 . . . 4  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
9 dfss3 3330 . . . 4  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
10 dfss3 3330 . . . . 5  |-  ( x 
C_  U. B  <->  A. y  e.  x  y  e.  U. B )
11 elin 3522 . . . . . . . . . . 11  |-  ( z  e.  ( B  i^i  ~P x )  <->  ( z  e.  B  /\  z  e.  ~P x ) )
1211anbi2i 676 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( y  e.  z  /\  ( z  e.  B  /\  z  e. 
~P x ) ) )
13 an12 773 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  ( z  e.  B  /\  z  e.  ~P x ) )  <->  ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1412, 13bitri 241 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
1514exbii 1592 . . . . . . . 8  |-  ( E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <->  E. z
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
16 eluni 4010 . . . . . . . 8  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) ) )
17 df-rex 2703 . . . . . . . 8  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1815, 16, 173bitr4i 269 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x ) )
19 vex 2951 . . . . . . . . . 10  |-  z  e. 
_V
2019elpw 3797 . . . . . . . . 9  |-  ( z  e.  ~P x  <->  z  C_  x )
2120anbi2i 676 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  e.  ~P x
)  <->  ( y  e.  z  /\  z  C_  x ) )
2221rexbii 2722 . . . . . . 7  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z  e.  B  ( y  e.  z  /\  z  C_  x
) )
2318, 22bitr2i 242 . . . . . 6  |-  ( E. z  e.  B  ( y  e.  z  /\  z  C_  x )  <->  y  e.  U. ( B  i^i  ~P x ) )
2423ralbii 2721 . . . . 5  |-  ( A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
2510, 24anbi12i 679 . . . 4  |-  ( ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  <-> 
( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x
) ) )
268, 9, 253bitr4i 269 . . 3  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  ( x  C_ 
U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) )
2726abbii 2547 . 2  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) }
281, 27syl6eq 2483 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   U.cuni 4007   ` cfv 5445   topGenctg 13653
This theorem is referenced by:  eltg2  17011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-iota 5409  df-fun 5447  df-fv 5453  df-topgen 13655
  Copyright terms: Public domain W3C validator