MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval3 Unicode version

Theorem tgval3 16703
Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgval3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  E. y ( y  C_  B  /\  x  =  U. y ) } )
Distinct variable groups:    x, y, B    x, V, y

Proof of Theorem tgval3
StepHypRef Expression
1 eltg3 16702 . 2  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
21abbi2dv 2400 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  E. y ( y  C_  B  /\  x  =  U. y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686   {cab 2271    C_ wss 3154   U.cuni 3829   ` cfv 5257   topGenctg 13344
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-iota 5221  df-fun 5259  df-fv 5265  df-topgen 13346
  Copyright terms: Public domain W3C validator