MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval3 Structured version   Unicode version

Theorem tgval3 17021
Description: Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgval3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  E. y ( y  C_  B  /\  x  =  U. y ) } )
Distinct variable groups:    x, y, B    x, V, y

Proof of Theorem tgval3
StepHypRef Expression
1 eltg3 17020 . 2  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  B )  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
21abbi2dv 2551 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  E. y ( y  C_  B  /\  x  =  U. y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2422    C_ wss 3313   U.cuni 4008   ` cfv 5447   topGenctg 13658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-iota 5411  df-fun 5449  df-fv 5455  df-topgen 13660
  Copyright terms: Public domain W3C validator