MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  th3qlem1 Unicode version

Theorem th3qlem1 6766
Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
th3qlem1.1  |-  .~  Er  S
th3qlem1.3  |-  ( ( ( y  e.  S  /\  w  e.  S
)  /\  ( z  e.  S  /\  v  e.  S ) )  -> 
( ( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
Assertion
Ref Expression
th3qlem1  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )
)
Distinct variable groups:    x, y,
z, w, v,  .+    x, 
.~ , y, z, w, v    x, S, y, z, w, v    x, A, y, z, w, v   
x, B, y, z, w, v

Proof of Theorem th3qlem1
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ee4anv 1858 . . . 4  |-  ( E. y E. z E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  /\  (
( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  <->  ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) ) )
2 an4 797 . . . . . . 7  |-  ( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  /\  (
( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  <->  ( (
( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  /\  (
x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  ) ) )
3 eleq1 2345 . . . . . . . . . . . . 13  |-  ( A  =  [ y ]  .~  ->  ( A  e.  ( S /.  .~  ) 
<->  [ y ]  .~  e.  ( S /.  .~  ) ) )
4 eleq1 2345 . . . . . . . . . . . . 13  |-  ( B  =  [ z ]  .~  ->  ( B  e.  ( S /.  .~  ) 
<->  [ z ]  .~  e.  ( S /.  .~  ) ) )
53, 4bi2anan9 843 . . . . . . . . . . . 12  |-  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  ->  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  <->  ( [
y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  ) ) ) )
65adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  ->  (
( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  <-> 
( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
) ) )
76biimpac 472 . . . . . . . . . 10  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( [
y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  ) ) )
8 eqtr2 2303 . . . . . . . . . . . . 13  |-  ( ( A  =  [ y ]  .~  /\  A  =  [ w ]  .~  )  ->  [ y ]  .~  =  [ w ]  .~  )
9 eqtr2 2303 . . . . . . . . . . . . 13  |-  ( ( B  =  [ z ]  .~  /\  B  =  [ v ]  .~  )  ->  [ z ]  .~  =  [ v ]  .~  )
108, 9anim12i 549 . . . . . . . . . . . 12  |-  ( ( ( A  =  [
y ]  .~  /\  A  =  [ w ]  .~  )  /\  ( B  =  [ z ]  .~  /\  B  =  [ v ]  .~  ) )  ->  ( [ y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
1110an4s 799 . . . . . . . . . . 11  |-  ( ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  ->  ( [ y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
1211adantl 452 . . . . . . . . . 10  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )
13 th3qlem1.1 . . . . . . . . . . . 12  |-  .~  Er  S
1413a1i 10 . . . . . . . . . . 11  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  .~  Er  S )
15 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ y ]  .~  =  [
w ]  .~  )
16 erdm 6672 . . . . . . . . . . . . . . . 16  |-  (  .~  Er  S  ->  dom  .~  =  S )
1713, 16ax-mp 8 . . . . . . . . . . . . . . 15  |-  dom  .~  =  S
18 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ y ]  .~  e.  ( S /.  .~  )
)
19 ecelqsdm 6731 . . . . . . . . . . . . . . 15  |-  ( ( dom  .~  =  S  /\  [ y ]  .~  e.  ( S /.  .~  ) )  ->  y  e.  S
)
2017, 18, 19sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  y  e.  S )
2114, 20erth 6706 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
y  .~  w  <->  [ y ]  .~  =  [ w ]  .~  ) )
2215, 21mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  y  .~  w )
23 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ z ]  .~  =  [
v ]  .~  )
24 simplr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ z ]  .~  e.  ( S /.  .~  )
)
25 ecelqsdm 6731 . . . . . . . . . . . . . . 15  |-  ( ( dom  .~  =  S  /\  [ z ]  .~  e.  ( S /.  .~  ) )  ->  z  e.  S
)
2617, 24, 25sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  z  e.  S )
2714, 26erth 6706 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
z  .~  v  <->  [ z ]  .~  =  [ v ]  .~  ) )
2823, 27mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  z  .~  v )
2915, 18eqeltrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ w ]  .~  e.  ( S /.  .~  ) )
30 ecelqsdm 6731 . . . . . . . . . . . . . 14  |-  ( ( dom  .~  =  S  /\  [ w ]  .~  e.  ( S /.  .~  ) )  ->  w  e.  S )
3117, 29, 30sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  w  e.  S )
3223, 24eqeltrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ v ]  .~  e.  ( S /.  .~  )
)
33 ecelqsdm 6731 . . . . . . . . . . . . . 14  |-  ( ( dom  .~  =  S  /\  [ v ]  .~  e.  ( S /.  .~  ) )  ->  v  e.  S
)
3417, 32, 33sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  v  e.  S )
35 th3qlem1.3 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  S  /\  w  e.  S
)  /\  ( z  e.  S  /\  v  e.  S ) )  -> 
( ( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
3620, 31, 26, 34, 35syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
( y  .~  w  /\  z  .~  v
)  ->  ( y  .+  z )  .~  (
w  .+  v )
) )
3722, 28, 36mp2and 660 . . . . . . . . . . 11  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  (
y  .+  z )  .~  ( w  .+  v
) )
3814, 37erthi 6708 . . . . . . . . . 10  |-  ( ( ( [ y ]  .~  e.  ( S /.  .~  )  /\  [ z ]  .~  e.  ( S /.  .~  )
)  /\  ( [
y ]  .~  =  [ w ]  .~  /\ 
[ z ]  .~  =  [ v ]  .~  ) )  ->  [ ( y  .+  z ) ]  .~  =  [
( w  .+  v
) ]  .~  )
397, 12, 38syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  [ (
y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  )
40 eqeq12 2297 . . . . . . . . 9  |-  ( ( x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  )  ->  ( x  =  u  <->  [ ( y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  ) )
4139, 40syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  /\  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )  ->  ( (
x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  )  ->  x  =  u ) )
4241expimpd 586 . . . . . . 7  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) )  /\  ( x  =  [ ( y  .+  z ) ]  .~  /\  u  =  [ ( w  .+  v ) ]  .~  ) )  ->  x  =  u ) )
432, 42syl5bi 208 . . . . . 6  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4443exlimdvv 1670 . . . . 5  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4544exlimdvv 1670 . . . 4  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( E. y E. z E. w E. v ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  ( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
461, 45syl5bir 209 . . 3  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  -> 
( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
4746alrimivv 1620 . 2  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  A. x A. u ( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
48 eqeq1 2291 . . . . . 6  |-  ( x  =  u  ->  (
x  =  [ ( y  .+  z ) ]  .~  <->  u  =  [ ( y  .+  z ) ]  .~  ) )
4948anbi2d 684 . . . . 5  |-  ( x  =  u  ->  (
( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ (
y  .+  z ) ]  .~  )  <->  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [
( y  .+  z
) ]  .~  )
) )
50492exbidv 1616 . . . 4  |-  ( x  =  u  ->  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. y E. z
( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [ (
y  .+  z ) ]  .~  ) ) )
51 eceq1 6698 . . . . . . . 8  |-  ( y  =  w  ->  [ y ]  .~  =  [
w ]  .~  )
5251eqeq2d 2296 . . . . . . 7  |-  ( y  =  w  ->  ( A  =  [ y ]  .~  <->  A  =  [
w ]  .~  )
)
53 eceq1 6698 . . . . . . . 8  |-  ( z  =  v  ->  [ z ]  .~  =  [
v ]  .~  )
5453eqeq2d 2296 . . . . . . 7  |-  ( z  =  v  ->  ( B  =  [ z ]  .~  <->  B  =  [
v ]  .~  )
)
5552, 54bi2anan9 843 . . . . . 6  |-  ( ( y  =  w  /\  z  =  v )  ->  ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  <->  ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  ) ) )
56 oveq12 5869 . . . . . . . 8  |-  ( ( y  =  w  /\  z  =  v )  ->  ( y  .+  z
)  =  ( w 
.+  v ) )
57 eceq1 6698 . . . . . . . 8  |-  ( ( y  .+  z )  =  ( w  .+  v )  ->  [ ( y  .+  z ) ]  .~  =  [
( w  .+  v
) ]  .~  )
5856, 57syl 15 . . . . . . 7  |-  ( ( y  =  w  /\  z  =  v )  ->  [ ( y  .+  z ) ]  .~  =  [ ( w  .+  v ) ]  .~  )
5958eqeq2d 2296 . . . . . 6  |-  ( ( y  =  w  /\  z  =  v )  ->  ( u  =  [
( y  .+  z
) ]  .~  <->  u  =  [ ( w  .+  v ) ]  .~  ) )
6055, 59anbi12d 691 . . . . 5  |-  ( ( y  =  w  /\  z  =  v )  ->  ( ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [
( y  .+  z
) ]  .~  )  <->  ( ( A  =  [
w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ ( w  .+  v ) ]  .~  ) ) )
6160cbvex2v 1949 . . . 4  |-  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  u  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )
6250, 61syl6bb 252 . . 3  |-  ( x  =  u  ->  ( E. y E. z ( ( A  =  [
y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [ ( y  .+  z ) ]  .~  ) 
<->  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) ) )
6362mo4 2178 . 2  |-  ( E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  <->  A. x A. u ( ( E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )  /\  E. w E. v
( ( A  =  [ w ]  .~  /\  B  =  [ v ]  .~  )  /\  u  =  [ (
w  .+  v ) ]  .~  ) )  ->  x  =  u )
)
6447, 63sylibr 203 1  |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [ z ]  .~  )  /\  x  =  [
( y  .+  z
) ]  .~  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529   E.wex 1530    = wceq 1625    e. wcel 1686   E*wmo 2146   class class class wbr 4025   dom cdm 4691  (class class class)co 5860    Er wer 6659   [cec 6660   /.cqs 6661
This theorem is referenced by:  th3qlem2  6767
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fv 5265  df-ov 5863  df-er 6662  df-ec 6664  df-qs 6668
  Copyright terms: Public domain W3C validator