MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn2 Unicode version

Theorem tmdcn2 18072
Description: Write out the definition of continuity of  +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tmdcn2.1  |-  B  =  ( Base `  G
)
tmdcn2.2  |-  J  =  ( TopOpen `  G )
tmdcn2.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
tmdcn2  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  E. u  e.  J  E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  A. x  e.  u  A. y  e.  v 
( x  .+  y
)  e.  U ) )
Distinct variable groups:    v, u, x, y, G    u, J, v    u, U, v, x, y    u, X, v   
u, Y, v
Allowed substitution hints:    B( x, y, v, u)    .+ ( x, y, v, u)    J( x, y)    X( x, y)    Y( x, y)

Proof of Theorem tmdcn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tmdcn2.2 . . . . 5  |-  J  =  ( TopOpen `  G )
2 tmdcn2.1 . . . . 5  |-  B  =  ( Base `  G
)
31, 2tmdtopon 18064 . . . 4  |-  ( G  e. TopMnd  ->  J  e.  (TopOn `  B ) )
43ad2antrr 707 . . 3  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  J  e.  (TopOn `  B ) )
5 eqid 2404 . . . . . 6  |-  ( + f `  G )  =  ( + f `  G )
61, 5tmdcn 18066 . . . . 5  |-  ( G  e. TopMnd  ->  ( + f `  G )  e.  ( ( J  tX  J
)  Cn  J ) )
76ad2antrr 707 . . . 4  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( + f `  G )  e.  ( ( J  tX  J
)  Cn  J ) )
8 simpr1 963 . . . . . 6  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  X  e.  B
)
9 simpr2 964 . . . . . 6  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  Y  e.  B
)
10 opelxpi 4869 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
118, 9, 10syl2anc 643 . . . . 5  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  <. X ,  Y >.  e.  ( B  X.  B ) )
12 txtopon 17576 . . . . . . 7  |-  ( ( J  e.  (TopOn `  B )  /\  J  e.  (TopOn `  B )
)  ->  ( J  tX  J )  e.  (TopOn `  ( B  X.  B
) ) )
134, 4, 12syl2anc 643 . . . . . 6  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( J  tX  J )  e.  (TopOn `  ( B  X.  B
) ) )
14 toponuni 16947 . . . . . 6  |-  ( ( J  tX  J )  e.  (TopOn `  ( B  X.  B ) )  ->  ( B  X.  B )  =  U. ( J  tX  J ) )
1513, 14syl 16 . . . . 5  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( B  X.  B )  =  U. ( J  tX  J ) )
1611, 15eleqtrd 2480 . . . 4  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  <. X ,  Y >.  e.  U. ( J 
tX  J ) )
17 eqid 2404 . . . . 5  |-  U. ( J  tX  J )  = 
U. ( J  tX  J )
1817cncnpi 17296 . . . 4  |-  ( ( ( + f `  G )  e.  ( ( J  tX  J
)  Cn  J )  /\  <. X ,  Y >.  e.  U. ( J 
tX  J ) )  ->  ( + f `  G )  e.  ( ( ( J  tX  J )  CnP  J
) `  <. X ,  Y >. ) )
197, 16, 18syl2anc 643 . . 3  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( + f `  G )  e.  ( ( ( J  tX  J )  CnP  J
) `  <. X ,  Y >. ) )
20 simplr 732 . . 3  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  U  e.  J
)
21 tmdcn2.3 . . . . . 6  |-  .+  =  ( +g  `  G )
222, 21, 5plusfval 14658 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X ( + f `  G ) Y )  =  ( X  .+  Y ) )
238, 9, 22syl2anc 643 . . . 4  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( X ( + f `  G
) Y )  =  ( X  .+  Y
) )
24 simpr3 965 . . . 4  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( X  .+  Y )  e.  U
)
2523, 24eqeltrd 2478 . . 3  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  ( X ( + f `  G
) Y )  e.  U )
264, 4, 19, 20, 8, 9, 25txcnpi 17593 . 2  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  E. u  e.  J  E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' ( + f `  G
) " U ) ) )
27 dfss3 3298 . . . . . . 7  |-  ( ( u  X.  v ) 
C_  ( `' ( + f `  G
) " U )  <->  A. z  e.  (
u  X.  v ) z  e.  ( `' ( + f `  G ) " U
) )
28 eleq1 2464 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( `' ( + f `  G )
" U )  <->  <. x ,  y >.  e.  ( `' ( + f `  G ) " U
) ) )
292, 5plusffn 14660 . . . . . . . . . 10  |-  ( + f `  G )  Fn  ( B  X.  B )
30 elpreima 5809 . . . . . . . . . 10  |-  ( ( + f `  G
)  Fn  ( B  X.  B )  -> 
( <. x ,  y
>.  e.  ( `' ( + f `  G
) " U )  <-> 
( <. x ,  y
>.  e.  ( B  X.  B )  /\  (
( + f `  G ) `  <. x ,  y >. )  e.  U ) ) )
3129, 30ax-mp 8 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( `' ( + f `  G )
" U )  <->  ( <. x ,  y >.  e.  ( B  X.  B )  /\  ( ( + f `  G ) `
 <. x ,  y
>. )  e.  U
) )
3228, 31syl6bb 253 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( `' ( + f `  G )
" U )  <->  ( <. x ,  y >.  e.  ( B  X.  B )  /\  ( ( + f `  G ) `
 <. x ,  y
>. )  e.  U
) ) )
3332ralxp 4975 . . . . . . 7  |-  ( A. z  e.  ( u  X.  v ) z  e.  ( `' ( + f `  G )
" U )  <->  A. x  e.  u  A. y  e.  v  ( <. x ,  y >.  e.  ( B  X.  B )  /\  ( ( + f `  G ) `
 <. x ,  y
>. )  e.  U
) )
3427, 33bitri 241 . . . . . 6  |-  ( ( u  X.  v ) 
C_  ( `' ( + f `  G
) " U )  <->  A. x  e.  u  A. y  e.  v 
( <. x ,  y
>.  e.  ( B  X.  B )  /\  (
( + f `  G ) `  <. x ,  y >. )  e.  U ) )
35 opelxp 4867 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( B  X.  B
)  <->  ( x  e.  B  /\  y  e.  B ) )
36 df-ov 6043 . . . . . . . . . . . 12  |-  ( x ( + f `  G ) y )  =  ( ( + f `  G ) `
 <. x ,  y
>. )
372, 21, 5plusfval 14658 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x ( + f `  G ) y )  =  ( x  .+  y ) )
3836, 37syl5eqr 2450 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( + f `  G ) `  <. x ,  y >. )  =  ( x  .+  y ) )
3935, 38sylbi 188 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( B  X.  B
)  ->  ( ( + f `  G ) `
 <. x ,  y
>. )  =  (
x  .+  y )
)
4039eleq1d 2470 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( B  X.  B
)  ->  ( (
( + f `  G ) `  <. x ,  y >. )  e.  U  <->  ( x  .+  y )  e.  U
) )
4140biimpa 471 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  ( B  X.  B
)  /\  ( ( + f `  G ) `
 <. x ,  y
>. )  e.  U
)  ->  ( x  .+  y )  e.  U
)
4241ralimi 2741 . . . . . . 7  |-  ( A. y  e.  v  ( <. x ,  y >.  e.  ( B  X.  B
)  /\  ( ( + f `  G ) `
 <. x ,  y
>. )  e.  U
)  ->  A. y  e.  v  ( x  .+  y )  e.  U
)
4342ralimi 2741 . . . . . 6  |-  ( A. x  e.  u  A. y  e.  v  ( <. x ,  y >.  e.  ( B  X.  B
)  /\  ( ( + f `  G ) `
 <. x ,  y
>. )  e.  U
)  ->  A. x  e.  u  A. y  e.  v  ( x  .+  y )  e.  U
)
4434, 43sylbi 188 . . . . 5  |-  ( ( u  X.  v ) 
C_  ( `' ( + f `  G
) " U )  ->  A. x  e.  u  A. y  e.  v 
( x  .+  y
)  e.  U )
45443anim3i 1141 . . . 4  |-  ( ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' ( + f `  G
) " U ) )  ->  ( X  e.  u  /\  Y  e.  v  /\  A. x  e.  u  A. y  e.  v  ( x  .+  y )  e.  U
) )
4645reximi 2773 . . 3  |-  ( E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' ( + f `  G
) " U ) )  ->  E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  A. x  e.  u  A. y  e.  v  ( x  .+  y )  e.  U
) )
4746reximi 2773 . 2  |-  ( E. u  e.  J  E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' ( + f `  G
) " U ) )  ->  E. u  e.  J  E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  A. x  e.  u  A. y  e.  v  ( x  .+  y )  e.  U
) )
4826, 47syl 16 1  |-  ( ( ( G  e. TopMnd  /\  U  e.  J )  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .+  Y )  e.  U ) )  ->  E. u  e.  J  E. v  e.  J  ( X  e.  u  /\  Y  e.  v  /\  A. x  e.  u  A. y  e.  v 
( x  .+  y
)  e.  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   <.cop 3777   U.cuni 3975    X. cxp 4835   `'ccnv 4836   "cima 4840    Fn wfn 5408   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   TopOpenctopn 13604   + fcplusf 14642  TopOnctopon 16914    Cn ccn 17242    CnP ccnp 17243    tX ctx 17545  TopMndctmd 18053
This theorem is referenced by:  tsmsxp  18137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-map 6979  df-topgen 13622  df-plusf 14646  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-tx 17547  df-tmd 18055
  Copyright terms: Public domain W3C validator