Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmtcl Structured version   Unicode version

Theorem topmtcl 26394
Description: The meet of a collection of topologies on  X is again a topology on  X. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmtcl  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  e.  (TopOn `  X ) )

Proof of Theorem topmtcl
StepHypRef Expression
1 toponmre 17159 . 2  |-  ( X  e.  V  ->  (TopOn `  X )  e.  (Moore `  ~P X ) )
2 mrerintcl 13824 . 2  |-  ( ( (TopOn `  X )  e.  (Moore `  ~P X )  /\  S  C_  (TopOn `  X ) )  -> 
( ~P X  i^i  |^| S )  e.  (TopOn `  X ) )
31, 2sylan 459 1  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( ~P X  i^i  |^| S
)  e.  (TopOn `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    e. wcel 1726    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   |^|cint 4052   ` cfv 5456  Moorecmre 13809  TopOnctopon 16961
This theorem is referenced by:  topmeet  26395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-mre 13813  df-top 16965  df-topon 16968
  Copyright terms: Public domain W3C validator