MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcl Unicode version

Theorem trcl 7378
Description: For any set  A, show the properties of its transitive closure  C. Similar to Theorem 9.1 of [TakeutiZaring] p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 7379 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
trcl.1  |-  A  e. 
_V
trcl.2  |-  F  =  ( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om )
trcl.3  |-  C  = 
U_ y  e.  om  ( F `  y )
Assertion
Ref Expression
trcl  |-  ( A 
C_  C  /\  Tr  C  /\  A. x ( ( A  C_  x  /\  Tr  x )  ->  C  C_  x ) )
Distinct variable groups:    x, z    x, y, A    x, F, y
Allowed substitution hints:    A( z)    C( x, y, z)    F( z)

Proof of Theorem trcl
StepHypRef Expression
1 peano1 4647 . . . . 5  |-  (/)  e.  om
2 trcl.2 . . . . . . . 8  |-  F  =  ( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om )
32fveq1i 5459 . . . . . . 7  |-  ( F `
 (/) )  =  ( ( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om ) `  (/) )
4 trcl.1 . . . . . . . 8  |-  A  e. 
_V
5 fr0g 6416 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om ) `  (/) )  =  A )
64, 5ax-mp 10 . . . . . . 7  |-  ( ( rec ( ( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  (/) )  =  A
73, 6eqtr2i 2279 . . . . . 6  |-  A  =  ( F `  (/) )
87eqimssi 3207 . . . . 5  |-  A  C_  ( F `  (/) )
9 fveq2 5458 . . . . . . 7  |-  ( y  =  (/)  ->  ( F `
 y )  =  ( F `  (/) ) )
109sseq2d 3181 . . . . . 6  |-  ( y  =  (/)  ->  ( A 
C_  ( F `  y )  <->  A  C_  ( F `  (/) ) ) )
1110rcla4ev 2859 . . . . 5  |-  ( (
(/)  e.  om  /\  A  C_  ( F `  (/) ) )  ->  E. y  e.  om  A  C_  ( F `  y ) )
121, 8, 11mp2an 656 . . . 4  |-  E. y  e.  om  A  C_  ( F `  y )
13 ssiun 3918 . . . 4  |-  ( E. y  e.  om  A  C_  ( F `  y
)  ->  A  C_  U_ y  e.  om  ( F `  y ) )
1412, 13ax-mp 10 . . 3  |-  A  C_  U_ y  e.  om  ( F `  y )
15 trcl.3 . . 3  |-  C  = 
U_ y  e.  om  ( F `  y )
1614, 15sseqtr4i 3186 . 2  |-  A  C_  C
17 dftr2 4089 . . . 4  |-  ( Tr 
U_ y  e.  om  ( F `  y )  <->  A. v A. u ( ( v  e.  u  /\  u  e.  U_ y  e.  om  ( F `  y ) )  -> 
v  e.  U_ y  e.  om  ( F `  y ) ) )
18 eliun 3883 . . . . . . . . 9  |-  ( u  e.  U_ y  e. 
om  ( F `  y )  <->  E. y  e.  om  u  e.  ( F `  y ) )
1918anbi2i 678 . . . . . . . 8  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  <->  ( v  e.  u  /\  E. y  e.  om  u  e.  ( F `  y ) ) )
20 r19.42v 2669 . . . . . . . 8  |-  ( E. y  e.  om  (
v  e.  u  /\  u  e.  ( F `  y ) )  <->  ( v  e.  u  /\  E. y  e.  om  u  e.  ( F `  y ) ) )
2119, 20bitr4i 245 . . . . . . 7  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  <->  E. y  e.  om  ( v  e.  u  /\  u  e.  ( F `  y
) ) )
22 elunii 3806 . . . . . . . . 9  |-  ( ( v  e.  u  /\  u  e.  ( F `  y ) )  -> 
v  e.  U. ( F `  y )
)
23 ssun2 3314 . . . . . . . . . . 11  |-  U. ( F `  y )  C_  ( ( F `  y )  u.  U. ( F `  y ) )
24 fvex 5472 . . . . . . . . . . . . 13  |-  ( F `
 y )  e. 
_V
2524uniex 4488 . . . . . . . . . . . . 13  |-  U. ( F `  y )  e.  _V
2624, 25unex 4490 . . . . . . . . . . . 12  |-  ( ( F `  y )  u.  U. ( F `
 y ) )  e.  _V
27 id 21 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  x  =  z )
28 unieq 3810 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  U. x  =  U. z )
2927, 28uneq12d 3305 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  u.  U. x
)  =  ( z  u.  U. z ) )
30 id 21 . . . . . . . . . . . . . 14  |-  ( x  =  ( F `  y )  ->  x  =  ( F `  y ) )
31 unieq 3810 . . . . . . . . . . . . . 14  |-  ( x  =  ( F `  y )  ->  U. x  =  U. ( F `  y ) )
3230, 31uneq12d 3305 . . . . . . . . . . . . 13  |-  ( x  =  ( F `  y )  ->  (
x  u.  U. x
)  =  ( ( F `  y )  u.  U. ( F `
 y ) ) )
332, 29, 32frsucmpt2 6420 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( ( F `  y )  u.  U. ( F `  y ) )  e.  _V )  ->  ( F `  suc  y )  =  ( ( F `  y
)  u.  U. ( F `  y )
) )
3426, 33mpan2 655 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( F `  suc  y )  =  ( ( F `
 y )  u. 
U. ( F `  y ) ) )
3523, 34syl5sseqr 3202 . . . . . . . . . 10  |-  ( y  e.  om  ->  U. ( F `  y )  C_  ( F `  suc  y ) )
3635sseld 3154 . . . . . . . . 9  |-  ( y  e.  om  ->  (
v  e.  U. ( F `  y )  ->  v  e.  ( F `
 suc  y )
) )
3722, 36syl5 30 . . . . . . . 8  |-  ( y  e.  om  ->  (
( v  e.  u  /\  u  e.  ( F `  y )
)  ->  v  e.  ( F `  suc  y
) ) )
3837reximia 2623 . . . . . . 7  |-  ( E. y  e.  om  (
v  e.  u  /\  u  e.  ( F `  y ) )  ->  E. y  e.  om  v  e.  ( F `  suc  y ) )
3921, 38sylbi 189 . . . . . 6  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  ->  E. y  e.  om  v  e.  ( F `  suc  y ) )
40 peano2 4648 . . . . . . . . . 10  |-  ( y  e.  om  ->  suc  y  e.  om )
41 fveq2 5458 . . . . . . . . . . . . 13  |-  ( u  =  suc  y  -> 
( F `  u
)  =  ( F `
 suc  y )
)
4241eleq2d 2325 . . . . . . . . . . . 12  |-  ( u  =  suc  y  -> 
( v  e.  ( F `  u )  <-> 
v  e.  ( F `
 suc  y )
) )
4342rcla4ev 2859 . . . . . . . . . . 11  |-  ( ( suc  y  e.  om  /\  v  e.  ( F `
 suc  y )
)  ->  E. u  e.  om  v  e.  ( F `  u ) )
4443ex 425 . . . . . . . . . 10  |-  ( suc  y  e.  om  ->  ( v  e.  ( F `
 suc  y )  ->  E. u  e.  om  v  e.  ( F `  u ) ) )
4540, 44syl 17 . . . . . . . . 9  |-  ( y  e.  om  ->  (
v  e.  ( F `
 suc  y )  ->  E. u  e.  om  v  e.  ( F `  u ) ) )
4645rexlimiv 2636 . . . . . . . 8  |-  ( E. y  e.  om  v  e.  ( F `  suc  y )  ->  E. u  e.  om  v  e.  ( F `  u ) )
47 fveq2 5458 . . . . . . . . . 10  |-  ( y  =  u  ->  ( F `  y )  =  ( F `  u ) )
4847eleq2d 2325 . . . . . . . . 9  |-  ( y  =  u  ->  (
v  e.  ( F `
 y )  <->  v  e.  ( F `  u ) ) )
4948cbvrexv 2740 . . . . . . . 8  |-  ( E. y  e.  om  v  e.  ( F `  y
)  <->  E. u  e.  om  v  e.  ( F `  u ) )
5046, 49sylibr 205 . . . . . . 7  |-  ( E. y  e.  om  v  e.  ( F `  suc  y )  ->  E. y  e.  om  v  e.  ( F `  y ) )
51 eliun 3883 . . . . . . 7  |-  ( v  e.  U_ y  e. 
om  ( F `  y )  <->  E. y  e.  om  v  e.  ( F `  y ) )
5250, 51sylibr 205 . . . . . 6  |-  ( E. y  e.  om  v  e.  ( F `  suc  y )  ->  v  e.  U_ y  e.  om  ( F `  y ) )
5339, 52syl 17 . . . . 5  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  -> 
v  e.  U_ y  e.  om  ( F `  y ) )
5453ax-gen 1536 . . . 4  |-  A. u
( ( v  e.  u  /\  u  e. 
U_ y  e.  om  ( F `  y ) )  ->  v  e.  U_ y  e.  om  ( F `  y )
)
5517, 54mpgbir 1544 . . 3  |-  Tr  U_ y  e.  om  ( F `  y )
56 treq 4093 . . . 4  |-  ( C  =  U_ y  e. 
om  ( F `  y )  ->  ( Tr  C  <->  Tr  U_ y  e. 
om  ( F `  y ) ) )
5715, 56ax-mp 10 . . 3  |-  ( Tr  C  <->  Tr  U_ y  e. 
om  ( F `  y ) )
5855, 57mpbir 202 . 2  |-  Tr  C
59 fveq2 5458 . . . . . . . 8  |-  ( v  =  (/)  ->  ( F `
 v )  =  ( F `  (/) ) )
6059sseq1d 3180 . . . . . . 7  |-  ( v  =  (/)  ->  ( ( F `  v ) 
C_  x  <->  ( F `  (/) )  C_  x
) )
61 fveq2 5458 . . . . . . . 8  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
6261sseq1d 3180 . . . . . . 7  |-  ( v  =  y  ->  (
( F `  v
)  C_  x  <->  ( F `  y )  C_  x
) )
63 fveq2 5458 . . . . . . . 8  |-  ( v  =  suc  y  -> 
( F `  v
)  =  ( F `
 suc  y )
)
6463sseq1d 3180 . . . . . . 7  |-  ( v  =  suc  y  -> 
( ( F `  v )  C_  x  <->  ( F `  suc  y
)  C_  x )
)
653, 6eqtri 2278 . . . . . . . . . 10  |-  ( F `
 (/) )  =  A
6665sseq1i 3177 . . . . . . . . 9  |-  ( ( F `  (/) )  C_  x 
<->  A  C_  x )
6766biimpri 199 . . . . . . . 8  |-  ( A 
C_  x  ->  ( F `  (/) )  C_  x )
6867adantr 453 . . . . . . 7  |-  ( ( A  C_  x  /\  Tr  x )  ->  ( F `  (/) )  C_  x )
69 uniss 3822 . . . . . . . . . . . . 13  |-  ( ( F `  y ) 
C_  x  ->  U. ( F `  y )  C_ 
U. x )
70 df-tr 4088 . . . . . . . . . . . . . 14  |-  ( Tr  x  <->  U. x  C_  x
)
71 sstr2 3161 . . . . . . . . . . . . . 14  |-  ( U. ( F `  y ) 
C_  U. x  ->  ( U. x  C_  x  ->  U. ( F `  y
)  C_  x )
)
7270, 71syl5bi 210 . . . . . . . . . . . . 13  |-  ( U. ( F `  y ) 
C_  U. x  ->  ( Tr  x  ->  U. ( F `  y )  C_  x ) )
7369, 72syl 17 . . . . . . . . . . . 12  |-  ( ( F `  y ) 
C_  x  ->  ( Tr  x  ->  U. ( F `  y )  C_  x ) )
7473anc2li 542 . . . . . . . . . . 11  |-  ( ( F `  y ) 
C_  x  ->  ( Tr  x  ->  ( ( F `  y ) 
C_  x  /\  U. ( F `  y ) 
C_  x ) ) )
75 unss 3324 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  C_  x  /\  U. ( F `  y
)  C_  x )  <->  ( ( F `  y
)  u.  U. ( F `  y )
)  C_  x )
7674, 75syl6ib 219 . . . . . . . . . 10  |-  ( ( F `  y ) 
C_  x  ->  ( Tr  x  ->  ( ( F `  y )  u.  U. ( F `
 y ) ) 
C_  x ) )
7734sseq1d 3180 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( F `  suc  y )  C_  x  <->  ( ( F `  y
)  u.  U. ( F `  y )
)  C_  x )
)
7877biimprd 216 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( F `  y )  u.  U. ( F `  y ) )  C_  x  ->  ( F `  suc  y
)  C_  x )
)
7976, 78syl9r 69 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( F `  y
)  C_  x  ->  ( Tr  x  ->  ( F `  suc  y ) 
C_  x ) ) )
8079com23 74 . . . . . . . 8  |-  ( y  e.  om  ->  ( Tr  x  ->  ( ( F `  y ) 
C_  x  ->  ( F `  suc  y ) 
C_  x ) ) )
8180adantld 455 . . . . . . 7  |-  ( y  e.  om  ->  (
( A  C_  x  /\  Tr  x )  -> 
( ( F `  y )  C_  x  ->  ( F `  suc  y )  C_  x
) ) )
8260, 62, 64, 68, 81finds2 4656 . . . . . 6  |-  ( v  e.  om  ->  (
( A  C_  x  /\  Tr  x )  -> 
( F `  v
)  C_  x )
)
8382com12 29 . . . . 5  |-  ( ( A  C_  x  /\  Tr  x )  ->  (
v  e.  om  ->  ( F `  v ) 
C_  x ) )
8483ralrimiv 2600 . . . 4  |-  ( ( A  C_  x  /\  Tr  x )  ->  A. v  e.  om  ( F `  v )  C_  x
)
85 fveq2 5458 . . . . . . . 8  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
8685cbviunv 3915 . . . . . . 7  |-  U_ y  e.  om  ( F `  y )  =  U_ v  e.  om  ( F `  v )
8715, 86eqtri 2278 . . . . . 6  |-  C  = 
U_ v  e.  om  ( F `  v )
8887sseq1i 3177 . . . . 5  |-  ( C 
C_  x  <->  U_ v  e. 
om  ( F `  v )  C_  x
)
89 iunss 3917 . . . . 5  |-  ( U_ v  e.  om  ( F `  v )  C_  x  <->  A. v  e.  om  ( F `  v ) 
C_  x )
9088, 89bitri 242 . . . 4  |-  ( C 
C_  x  <->  A. v  e.  om  ( F `  v )  C_  x
)
9184, 90sylibr 205 . . 3  |-  ( ( A  C_  x  /\  Tr  x )  ->  C  C_  x )
9291ax-gen 1536 . 2  |-  A. x
( ( A  C_  x  /\  Tr  x )  ->  C  C_  x
)
9316, 58, 923pm3.2i 1135 1  |-  ( A 
C_  C  /\  Tr  C  /\  A. x ( ( A  C_  x  /\  Tr  x )  ->  C  C_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519   _Vcvv 2763    u. cun 3125    C_ wss 3127   (/)c0 3430   U.cuni 3801   U_ciun 3879    e. cmpt 4051   Tr wtr 4087   suc csuc 4366   omcom 4628    |` cres 4663   ` cfv 4673   reccrdg 6390
This theorem is referenced by:  tz9.1  7379  tz9.1c  7380
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-recs 6356  df-rdg 6391
  Copyright terms: Public domain W3C validator