MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcl Unicode version

Theorem trcl 7557
Description: For any set  A, show the properties of its transitive closure  C. Similar to Theorem 9.1 of [TakeutiZaring] p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 7558 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
trcl.1  |-  A  e. 
_V
trcl.2  |-  F  =  ( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om )
trcl.3  |-  C  = 
U_ y  e.  om  ( F `  y )
Assertion
Ref Expression
trcl  |-  ( A 
C_  C  /\  Tr  C  /\  A. x ( ( A  C_  x  /\  Tr  x )  ->  C  C_  x ) )
Distinct variable groups:    x, z    x, y, A    x, F, y
Allowed substitution hints:    A( z)    C( x, y, z)    F( z)

Proof of Theorem trcl
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 4778 . . . . 5  |-  (/)  e.  om
2 trcl.2 . . . . . . . 8  |-  F  =  ( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om )
32fveq1i 5633 . . . . . . 7  |-  ( F `
 (/) )  =  ( ( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om ) `  (/) )
4 trcl.1 . . . . . . . 8  |-  A  e. 
_V
5 fr0g 6590 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om ) `  (/) )  =  A )
64, 5ax-mp 8 . . . . . . 7  |-  ( ( rec ( ( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  (/) )  =  A
73, 6eqtr2i 2387 . . . . . 6  |-  A  =  ( F `  (/) )
87eqimssi 3318 . . . . 5  |-  A  C_  ( F `  (/) )
9 fveq2 5632 . . . . . . 7  |-  ( y  =  (/)  ->  ( F `
 y )  =  ( F `  (/) ) )
109sseq2d 3292 . . . . . 6  |-  ( y  =  (/)  ->  ( A 
C_  ( F `  y )  <->  A  C_  ( F `  (/) ) ) )
1110rspcev 2969 . . . . 5  |-  ( (
(/)  e.  om  /\  A  C_  ( F `  (/) ) )  ->  E. y  e.  om  A  C_  ( F `  y ) )
121, 8, 11mp2an 653 . . . 4  |-  E. y  e.  om  A  C_  ( F `  y )
13 ssiun 4046 . . . 4  |-  ( E. y  e.  om  A  C_  ( F `  y
)  ->  A  C_  U_ y  e.  om  ( F `  y ) )
1412, 13ax-mp 8 . . 3  |-  A  C_  U_ y  e.  om  ( F `  y )
15 trcl.3 . . 3  |-  C  = 
U_ y  e.  om  ( F `  y )
1614, 15sseqtr4i 3297 . 2  |-  A  C_  C
17 dftr2 4217 . . . 4  |-  ( Tr 
U_ y  e.  om  ( F `  y )  <->  A. v A. u ( ( v  e.  u  /\  u  e.  U_ y  e.  om  ( F `  y ) )  -> 
v  e.  U_ y  e.  om  ( F `  y ) ) )
18 eliun 4011 . . . . . . . . 9  |-  ( u  e.  U_ y  e. 
om  ( F `  y )  <->  E. y  e.  om  u  e.  ( F `  y ) )
1918anbi2i 675 . . . . . . . 8  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  <->  ( v  e.  u  /\  E. y  e.  om  u  e.  ( F `  y ) ) )
20 r19.42v 2779 . . . . . . . 8  |-  ( E. y  e.  om  (
v  e.  u  /\  u  e.  ( F `  y ) )  <->  ( v  e.  u  /\  E. y  e.  om  u  e.  ( F `  y ) ) )
2119, 20bitr4i 243 . . . . . . 7  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  <->  E. y  e.  om  ( v  e.  u  /\  u  e.  ( F `  y
) ) )
22 elunii 3934 . . . . . . . . 9  |-  ( ( v  e.  u  /\  u  e.  ( F `  y ) )  -> 
v  e.  U. ( F `  y )
)
23 ssun2 3427 . . . . . . . . . . 11  |-  U. ( F `  y )  C_  ( ( F `  y )  u.  U. ( F `  y ) )
24 fvex 5646 . . . . . . . . . . . . 13  |-  ( F `
 y )  e. 
_V
2524uniex 4619 . . . . . . . . . . . . 13  |-  U. ( F `  y )  e.  _V
2624, 25unex 4621 . . . . . . . . . . . 12  |-  ( ( F `  y )  u.  U. ( F `
 y ) )  e.  _V
27 id 19 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  x  =  z )
28 unieq 3938 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  U. x  =  U. z )
2927, 28uneq12d 3418 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  u.  U. x
)  =  ( z  u.  U. z ) )
30 id 19 . . . . . . . . . . . . . 14  |-  ( x  =  ( F `  y )  ->  x  =  ( F `  y ) )
31 unieq 3938 . . . . . . . . . . . . . 14  |-  ( x  =  ( F `  y )  ->  U. x  =  U. ( F `  y ) )
3230, 31uneq12d 3418 . . . . . . . . . . . . 13  |-  ( x  =  ( F `  y )  ->  (
x  u.  U. x
)  =  ( ( F `  y )  u.  U. ( F `
 y ) ) )
332, 29, 32frsucmpt2 6594 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  ( ( F `  y )  u.  U. ( F `  y ) )  e.  _V )  ->  ( F `  suc  y )  =  ( ( F `  y
)  u.  U. ( F `  y )
) )
3426, 33mpan2 652 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( F `  suc  y )  =  ( ( F `
 y )  u. 
U. ( F `  y ) ) )
3523, 34syl5sseqr 3313 . . . . . . . . . 10  |-  ( y  e.  om  ->  U. ( F `  y )  C_  ( F `  suc  y ) )
3635sseld 3265 . . . . . . . . 9  |-  ( y  e.  om  ->  (
v  e.  U. ( F `  y )  ->  v  e.  ( F `
 suc  y )
) )
3722, 36syl5 28 . . . . . . . 8  |-  ( y  e.  om  ->  (
( v  e.  u  /\  u  e.  ( F `  y )
)  ->  v  e.  ( F `  suc  y
) ) )
3837reximia 2733 . . . . . . 7  |-  ( E. y  e.  om  (
v  e.  u  /\  u  e.  ( F `  y ) )  ->  E. y  e.  om  v  e.  ( F `  suc  y ) )
3921, 38sylbi 187 . . . . . 6  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  ->  E. y  e.  om  v  e.  ( F `  suc  y ) )
40 peano2 4779 . . . . . . . . . 10  |-  ( y  e.  om  ->  suc  y  e.  om )
41 fveq2 5632 . . . . . . . . . . . . 13  |-  ( u  =  suc  y  -> 
( F `  u
)  =  ( F `
 suc  y )
)
4241eleq2d 2433 . . . . . . . . . . . 12  |-  ( u  =  suc  y  -> 
( v  e.  ( F `  u )  <-> 
v  e.  ( F `
 suc  y )
) )
4342rspcev 2969 . . . . . . . . . . 11  |-  ( ( suc  y  e.  om  /\  v  e.  ( F `
 suc  y )
)  ->  E. u  e.  om  v  e.  ( F `  u ) )
4443ex 423 . . . . . . . . . 10  |-  ( suc  y  e.  om  ->  ( v  e.  ( F `
 suc  y )  ->  E. u  e.  om  v  e.  ( F `  u ) ) )
4540, 44syl 15 . . . . . . . . 9  |-  ( y  e.  om  ->  (
v  e.  ( F `
 suc  y )  ->  E. u  e.  om  v  e.  ( F `  u ) ) )
4645rexlimiv 2746 . . . . . . . 8  |-  ( E. y  e.  om  v  e.  ( F `  suc  y )  ->  E. u  e.  om  v  e.  ( F `  u ) )
47 fveq2 5632 . . . . . . . . . 10  |-  ( y  =  u  ->  ( F `  y )  =  ( F `  u ) )
4847eleq2d 2433 . . . . . . . . 9  |-  ( y  =  u  ->  (
v  e.  ( F `
 y )  <->  v  e.  ( F `  u ) ) )
4948cbvrexv 2850 . . . . . . . 8  |-  ( E. y  e.  om  v  e.  ( F `  y
)  <->  E. u  e.  om  v  e.  ( F `  u ) )
5046, 49sylibr 203 . . . . . . 7  |-  ( E. y  e.  om  v  e.  ( F `  suc  y )  ->  E. y  e.  om  v  e.  ( F `  y ) )
51 eliun 4011 . . . . . . 7  |-  ( v  e.  U_ y  e. 
om  ( F `  y )  <->  E. y  e.  om  v  e.  ( F `  y ) )
5250, 51sylibr 203 . . . . . 6  |-  ( E. y  e.  om  v  e.  ( F `  suc  y )  ->  v  e.  U_ y  e.  om  ( F `  y ) )
5339, 52syl 15 . . . . 5  |-  ( ( v  e.  u  /\  u  e.  U_ y  e. 
om  ( F `  y ) )  -> 
v  e.  U_ y  e.  om  ( F `  y ) )
5453ax-gen 1551 . . . 4  |-  A. u
( ( v  e.  u  /\  u  e. 
U_ y  e.  om  ( F `  y ) )  ->  v  e.  U_ y  e.  om  ( F `  y )
)
5517, 54mpgbir 1555 . . 3  |-  Tr  U_ y  e.  om  ( F `  y )
56 treq 4221 . . . 4  |-  ( C  =  U_ y  e. 
om  ( F `  y )  ->  ( Tr  C  <->  Tr  U_ y  e. 
om  ( F `  y ) ) )
5715, 56ax-mp 8 . . 3  |-  ( Tr  C  <->  Tr  U_ y  e. 
om  ( F `  y ) )
5855, 57mpbir 200 . 2  |-  Tr  C
59 fveq2 5632 . . . . . . . 8  |-  ( v  =  (/)  ->  ( F `
 v )  =  ( F `  (/) ) )
6059sseq1d 3291 . . . . . . 7  |-  ( v  =  (/)  ->  ( ( F `  v ) 
C_  x  <->  ( F `  (/) )  C_  x
) )
61 fveq2 5632 . . . . . . . 8  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
6261sseq1d 3291 . . . . . . 7  |-  ( v  =  y  ->  (
( F `  v
)  C_  x  <->  ( F `  y )  C_  x
) )
63 fveq2 5632 . . . . . . . 8  |-  ( v  =  suc  y  -> 
( F `  v
)  =  ( F `
 suc  y )
)
6463sseq1d 3291 . . . . . . 7  |-  ( v  =  suc  y  -> 
( ( F `  v )  C_  x  <->  ( F `  suc  y
)  C_  x )
)
653, 6eqtri 2386 . . . . . . . . . 10  |-  ( F `
 (/) )  =  A
6665sseq1i 3288 . . . . . . . . 9  |-  ( ( F `  (/) )  C_  x 
<->  A  C_  x )
6766biimpri 197 . . . . . . . 8  |-  ( A 
C_  x  ->  ( F `  (/) )  C_  x )
6867adantr 451 . . . . . . 7  |-  ( ( A  C_  x  /\  Tr  x )  ->  ( F `  (/) )  C_  x )
69 uniss 3950 . . . . . . . . . . . . 13  |-  ( ( F `  y ) 
C_  x  ->  U. ( F `  y )  C_ 
U. x )
70 df-tr 4216 . . . . . . . . . . . . . 14  |-  ( Tr  x  <->  U. x  C_  x
)
71 sstr2 3272 . . . . . . . . . . . . . 14  |-  ( U. ( F `  y ) 
C_  U. x  ->  ( U. x  C_  x  ->  U. ( F `  y
)  C_  x )
)
7270, 71syl5bi 208 . . . . . . . . . . . . 13  |-  ( U. ( F `  y ) 
C_  U. x  ->  ( Tr  x  ->  U. ( F `  y )  C_  x ) )
7369, 72syl 15 . . . . . . . . . . . 12  |-  ( ( F `  y ) 
C_  x  ->  ( Tr  x  ->  U. ( F `  y )  C_  x ) )
7473anc2li 540 . . . . . . . . . . 11  |-  ( ( F `  y ) 
C_  x  ->  ( Tr  x  ->  ( ( F `  y ) 
C_  x  /\  U. ( F `  y ) 
C_  x ) ) )
75 unss 3437 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  C_  x  /\  U. ( F `  y
)  C_  x )  <->  ( ( F `  y
)  u.  U. ( F `  y )
)  C_  x )
7674, 75syl6ib 217 . . . . . . . . . 10  |-  ( ( F `  y ) 
C_  x  ->  ( Tr  x  ->  ( ( F `  y )  u.  U. ( F `
 y ) ) 
C_  x ) )
7734sseq1d 3291 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( F `  suc  y )  C_  x  <->  ( ( F `  y
)  u.  U. ( F `  y )
)  C_  x )
)
7877biimprd 214 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( F `  y )  u.  U. ( F `  y ) )  C_  x  ->  ( F `  suc  y
)  C_  x )
)
7976, 78syl9r 67 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( F `  y
)  C_  x  ->  ( Tr  x  ->  ( F `  suc  y ) 
C_  x ) ) )
8079com23 72 . . . . . . . 8  |-  ( y  e.  om  ->  ( Tr  x  ->  ( ( F `  y ) 
C_  x  ->  ( F `  suc  y ) 
C_  x ) ) )
8180adantld 453 . . . . . . 7  |-  ( y  e.  om  ->  (
( A  C_  x  /\  Tr  x )  -> 
( ( F `  y )  C_  x  ->  ( F `  suc  y )  C_  x
) ) )
8260, 62, 64, 68, 81finds2 4787 . . . . . 6  |-  ( v  e.  om  ->  (
( A  C_  x  /\  Tr  x )  -> 
( F `  v
)  C_  x )
)
8382com12 27 . . . . 5  |-  ( ( A  C_  x  /\  Tr  x )  ->  (
v  e.  om  ->  ( F `  v ) 
C_  x ) )
8483ralrimiv 2710 . . . 4  |-  ( ( A  C_  x  /\  Tr  x )  ->  A. v  e.  om  ( F `  v )  C_  x
)
85 fveq2 5632 . . . . . . . 8  |-  ( y  =  v  ->  ( F `  y )  =  ( F `  v ) )
8685cbviunv 4043 . . . . . . 7  |-  U_ y  e.  om  ( F `  y )  =  U_ v  e.  om  ( F `  v )
8715, 86eqtri 2386 . . . . . 6  |-  C  = 
U_ v  e.  om  ( F `  v )
8887sseq1i 3288 . . . . 5  |-  ( C 
C_  x  <->  U_ v  e. 
om  ( F `  v )  C_  x
)
89 iunss 4045 . . . . 5  |-  ( U_ v  e.  om  ( F `  v )  C_  x  <->  A. v  e.  om  ( F `  v ) 
C_  x )
9088, 89bitri 240 . . . 4  |-  ( C 
C_  x  <->  A. v  e.  om  ( F `  v )  C_  x
)
9184, 90sylibr 203 . . 3  |-  ( ( A  C_  x  /\  Tr  x )  ->  C  C_  x )
9291ax-gen 1551 . 2  |-  A. x
( ( A  C_  x  /\  Tr  x )  ->  C  C_  x
)
9316, 58, 923pm3.2i 1131 1  |-  ( A 
C_  C  /\  Tr  C  /\  A. x ( ( A  C_  x  /\  Tr  x )  ->  C  C_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935   A.wal 1545    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629   _Vcvv 2873    u. cun 3236    C_ wss 3238   (/)c0 3543   U.cuni 3929   U_ciun 4007    e. cmpt 4179   Tr wtr 4215   suc csuc 4497   omcom 4759    |` cres 4794   ` cfv 5358   reccrdg 6564
This theorem is referenced by:  tz9.1  7558  tz9.1c  7559
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-recs 6530  df-rdg 6565
  Copyright terms: Public domain W3C validator