Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trelpss Unicode version

Theorem trelpss 26993
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 4314, ax-reg 7239 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
trelpss  |-  ( ( Tr  A  /\  B  e.  A )  ->  B  C.  A )

Proof of Theorem trelpss
StepHypRef Expression
1 zfregfr 7249 . . 3  |-  _E  Fr  A
2 tz7.2 4314 . . 3  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
31, 2mp3an2 1270 . 2  |-  ( ( Tr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
4 df-pss 3110 . 2  |-  ( B 
C.  A  <->  ( B  C_  A  /\  B  =/= 
A ) )
53, 4sylibr 205 1  |-  ( ( Tr  A  /\  B  e.  A )  ->  B  C.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621    =/= wne 2419    C_ wss 3094    C. wpss 3095   Tr wtr 4053    _E cep 4240    Fr wfr 4286
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-reg 7239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-fr 4289
  Copyright terms: Public domain W3C validator