Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trelpss Unicode version

Theorem trelpss 27527
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 4526, ax-reg 7516 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
trelpss  |-  ( ( Tr  A  /\  B  e.  A )  ->  B  C.  A )

Proof of Theorem trelpss
StepHypRef Expression
1 zfregfr 7526 . . 3  |-  _E  Fr  A
2 tz7.2 4526 . . 3  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
31, 2mp3an2 1267 . 2  |-  ( ( Tr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
4 df-pss 3296 . 2  |-  ( B 
C.  A  <->  ( B  C_  A  /\  B  =/= 
A ) )
53, 4sylibr 204 1  |-  ( ( Tr  A  /\  B  e.  A )  ->  B  C.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721    =/= wne 2567    C_ wss 3280    C. wpss 3281   Tr wtr 4262    _E cep 4452    Fr wfr 4498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-reg 7516
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-fr 4501
  Copyright terms: Public domain W3C validator