MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfg Unicode version

Theorem trfg 17588
Description: The trace operation and the  filGen operation are inverses to one another in some sense, with  filGen growing the base set and ↾t shrinking it. See fgtr 17587 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfg  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  =  F )

Proof of Theorem trfg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 17545 . . . . . . 7  |-  ( F  e.  ( Fil `  A
)  ->  F  e.  ( fBas `  A )
)
213ad2ant1 976 . . . . . 6  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  e.  ( fBas `  A
) )
3 filsspw 17548 . . . . . . . 8  |-  ( F  e.  ( Fil `  A
)  ->  F  C_  ~P A )
433ad2ant1 976 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_ 
~P A )
5 simp2 956 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  A  C_  X )
6 sspwb 4225 . . . . . . . 8  |-  ( A 
C_  X  <->  ~P A  C_ 
~P X )
75, 6sylib 188 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ~P A  C_  ~P X )
84, 7sstrd 3191 . . . . . 6  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_ 
~P X )
9 simp3 957 . . . . . 6  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  X  e.  V )
10 fbasweak 17562 . . . . . 6  |-  ( ( F  e.  ( fBas `  A )  /\  F  C_ 
~P X  /\  X  e.  V )  ->  F  e.  ( fBas `  X
) )
112, 8, 9, 10syl3anc 1182 . . . . 5  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  e.  ( fBas `  X
) )
12 fgcl 17575 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
1311, 12syl 15 . . . 4  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ( X filGen F )  e.  ( Fil `  X
) )
14 filtop 17552 . . . . 5  |-  ( F  e.  ( Fil `  A
)  ->  A  e.  F )
15143ad2ant1 976 . . . 4  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  A  e.  F )
16 restval 13333 . . . 4  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  A  e.  F )  ->  (
( X filGen F )t  A )  =  ran  (
x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) )
1713, 15, 16syl2anc 642 . . 3  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  =  ran  (
x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) )
18 elfg 17568 . . . . . . . 8  |-  ( F  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen F )  <-> 
( x  C_  X  /\  E. y  e.  F  y  C_  x ) ) )
1911, 18syl 15 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
x  e.  ( X
filGen F )  <->  ( x  C_  X  /\  E. y  e.  F  y  C_  x ) ) )
2019simplbda 607 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  ->  E. y  e.  F  y  C_  x )
21 simpll1 994 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  ->  F  e.  ( Fil `  A ) )
22 simprl 732 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  e.  F )
23 inss2 3392 . . . . . . . . . 10  |-  ( x  i^i  A )  C_  A
2423a1i 10 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
( x  i^i  A
)  C_  A )
25 simprr 733 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  C_  x )
26 filelss 17549 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  A )  /\  y  e.  F )  ->  y  C_  A )
27263ad2antl1 1117 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  y  e.  F )  ->  y  C_  A )
2827ad2ant2r 727 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  C_  A )
2925, 28ssind 3395 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  C_  ( x  i^i  A ) )
30 filss 17550 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  A )  /\  (
y  e.  F  /\  ( x  i^i  A ) 
C_  A  /\  y  C_  ( x  i^i  A
) ) )  -> 
( x  i^i  A
)  e.  F )
3121, 22, 24, 29, 30syl13anc 1184 . . . . . . . 8  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
( x  i^i  A
)  e.  F )
3231expr 598 . . . . . . 7  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  y  e.  F
)  ->  ( y  C_  x  ->  ( x  i^i  A )  e.  F
) )
3332rexlimdva 2669 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  ->  ( E. y  e.  F  y  C_  x  ->  ( x  i^i 
A )  e.  F
) )
3420, 33mpd 14 . . . . 5  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  ->  ( x  i^i 
A )  e.  F
)
35 eqid 2285 . . . . 5  |-  ( x  e.  ( X filGen F )  |->  ( x  i^i 
A ) )  =  ( x  e.  ( X filGen F )  |->  ( x  i^i  A ) )
3634, 35fmptd 5686 . . . 4  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) : ( X filGen F ) --> F )
37 frn 5397 . . . 4  |-  ( ( x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) : ( X filGen F ) --> F  ->  ran  ( x  e.  ( X filGen F )  |->  ( x  i^i  A ) )  C_  F )
3836, 37syl 15 . . 3  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ran  ( x  e.  ( X filGen F )  |->  ( x  i^i  A ) )  C_  F )
3917, 38eqsstrd 3214 . 2  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  C_  F )
40 filelss 17549 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  x  e.  F )  ->  x  C_  A )
41403ad2antl1 1117 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  x  C_  A )
42 df-ss 3168 . . . . . 6  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
4341, 42sylib 188 . . . . 5  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  (
x  i^i  A )  =  x )
4413adantr 451 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  ( X filGen F )  e.  ( Fil `  X
) )
4515adantr 451 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  A  e.  F )
46 ssfg 17569 . . . . . . . 8  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
4711, 46syl 15 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_  ( X filGen F ) )
4847sselda 3182 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  x  e.  ( X filGen F ) )
49 elrestr 13335 . . . . . 6  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  A  e.  F  /\  x  e.  ( X filGen F ) )  ->  ( x  i^i 
A )  e.  ( ( X filGen F )t  A ) )
5044, 45, 48, 49syl3anc 1182 . . . . 5  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( ( X filGen F )t  A ) )
5143, 50eqeltrrd 2360 . . . 4  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  x  e.  ( ( X filGen F )t  A ) )
5251ex 423 . . 3  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
x  e.  F  ->  x  e.  ( ( X filGen F )t  A ) ) )
5352ssrdv 3187 . 2  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_  ( ( X filGen F )t  A ) )
5439, 53eqssd 3198 1  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   E.wrex 2546    i^i cin 3153    C_ wss 3154   ~Pcpw 3627    e. cmpt 4079   ran crn 4692   -->wf 5253   ` cfv 5257  (class class class)co 5860   ↾t crest 13327   fBascfbas 17520   filGencfg 17521   Filcfil 17542
This theorem is referenced by:  cmetss  18742  minveclem4a  18796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-rest 13329  df-fbas 17522  df-fg 17523  df-fil 17543
  Copyright terms: Public domain W3C validator