MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trint0 Unicode version

Theorem trint0 4232
Description: Any non-empty transitive class includes its intersection. Exercise 2 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
trint0  |-  ( ( Tr  A  /\  A  =/=  (/) )  ->  |^| A  C_  A )

Proof of Theorem trint0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 n0 3552 . . 3  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
2 intss1 3979 . . . . 5  |-  ( x  e.  A  ->  |^| A  C_  x )
3 trss 4224 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
43com12 27 . . . . 5  |-  ( x  e.  A  ->  ( Tr  A  ->  x  C_  A ) )
5 sstr2 3272 . . . . 5  |-  ( |^| A  C_  x  ->  (
x  C_  A  ->  |^| A  C_  A )
)
62, 4, 5sylsyld 52 . . . 4  |-  ( x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A ) )
76exlimiv 1639 . . 3  |-  ( E. x  x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A )
)
81, 7sylbi 187 . 2  |-  ( A  =/=  (/)  ->  ( Tr  A  ->  |^| A  C_  A
) )
98impcom 419 1  |-  ( ( Tr  A  /\  A  =/=  (/) )  ->  |^| A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1546    e. wcel 1715    =/= wne 2529    C_ wss 3238   (/)c0 3543   |^|cint 3964   Tr wtr 4215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-v 2875  df-dif 3241  df-in 3245  df-ss 3252  df-nul 3544  df-uni 3930  df-int 3965  df-tr 4216
  Copyright terms: Public domain W3C validator