MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirecip Unicode version

Theorem trirecip 12195
Description: The sum of the reciprocals of the triangle numbers converge to two. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
trirecip  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  2

Proof of Theorem trirecip
StepHypRef Expression
1 2cn 9696 . . . . 5  |-  2  e.  CC
21a1i 12 . . . 4  |-  ( k  e.  NN  ->  2  e.  CC )
3 peano2nn 9638 . . . . . 6  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
4 nnmulcl 9649 . . . . . 6  |-  ( ( k  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( k  x.  ( k  +  1 ) )  e.  NN )
53, 4mpdan 652 . . . . 5  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  e.  NN )
65nncnd 9642 . . . 4  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  e.  CC )
75nnne0d 9670 . . . 4  |-  ( k  e.  NN  ->  (
k  x.  ( k  +  1 ) )  =/=  0 )
82, 6, 7divrecd 9419 . . 3  |-  ( k  e.  NN  ->  (
2  /  ( k  x.  ( k  +  1 ) ) )  =  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) ) )
98sumeq2i 12049 . 2  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  sum_ k  e.  NN  (
2  x.  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
10 nnuz 10142 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
11 1z 9932 . . . . . 6  |-  1  e.  ZZ
1211a1i 12 . . . . 5  |-  (  T. 
->  1  e.  ZZ )
13 id 21 . . . . . . . . 9  |-  ( n  =  k  ->  n  =  k )
14 oveq1 5717 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
1513, 14oveq12d 5728 . . . . . . . 8  |-  ( n  =  k  ->  (
n  x.  ( n  +  1 ) )  =  ( k  x.  ( k  +  1 ) ) )
1615oveq2d 5726 . . . . . . 7  |-  ( n  =  k  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( k  x.  (
k  +  1 ) ) ) )
17 eqid 2253 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) )
18 ovex 5735 . . . . . . 7  |-  ( 1  /  ( k  x.  ( k  +  1 ) ) )  e. 
_V
1916, 17, 18fvmpt 5454 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) `  k
)  =  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
2019adantl 454 . . . . 5  |-  ( (  T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) `  k
)  =  ( 1  /  ( k  x.  ( k  +  1 ) ) ) )
215nnrecred 9671 . . . . . . 7  |-  ( k  e.  NN  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  RR )
2221recnd 8741 . . . . . 6  |-  ( k  e.  NN  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  CC )
2322adantl 454 . . . . 5  |-  ( (  T.  /\  k  e.  NN )  ->  (
1  /  ( k  x.  ( k  +  1 ) ) )  e.  CC )
2417trireciplem 12194 . . . . . . 7  |-  seq  1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( n  x.  ( n  + 
1 ) ) ) ) )  ~~>  1
2524a1i 12 . . . . . 6  |-  (  T. 
->  seq  1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )  ~~>  1 )
26 climrel 11843 . . . . . . 7  |-  Rel  ~~>
2726releldmi 4822 . . . . . 6  |-  (  seq  1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) )  ~~>  1  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) ) )  e. 
dom 
~~>  )
2825, 27syl 17 . . . . 5  |-  (  T. 
->  seq  1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( n  x.  (
n  +  1 ) ) ) ) )  e.  dom  ~~>  )
291a1i 12 . . . . 5  |-  (  T. 
->  2  e.  CC )
3010, 12, 20, 23, 28, 29isummulc2 12102 . . . 4  |-  (  T. 
->  ( 2  x.  sum_ k  e.  NN  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  sum_ k  e.  NN  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) ) )
3110, 12, 20, 23, 25isumclim 12097 . . . . 5  |-  (  T. 
->  sum_ k  e.  NN  ( 1  /  (
k  x.  ( k  +  1 ) ) )  =  1 )
3231oveq2d 5726 . . . 4  |-  (  T. 
->  ( 2  x.  sum_ k  e.  NN  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 ) )
3330, 32eqtr3d 2287 . . 3  |-  (  T. 
->  sum_ k  e.  NN  ( 2  x.  (
1  /  ( k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 ) )
3433trud 1320 . 2  |-  sum_ k  e.  NN  ( 2  x.  ( 1  /  (
k  x.  ( k  +  1 ) ) ) )  =  ( 2  x.  1 )
351mulid1i 8719 . 2  |-  ( 2  x.  1 )  =  2
369, 34, 353eqtri 2277 1  |-  sum_ k  e.  NN  ( 2  / 
( k  x.  (
k  +  1 ) ) )  =  2
Colors of variables: wff set class
Syntax hints:    T. wtru 1312    = wceq 1619    e. wcel 1621   class class class wbr 3920    e. cmpt 3974   dom cdm 4580   ` cfv 4592  (class class class)co 5710   CCcc 8615   1c1 8618    + caddc 8620    x. cmul 8622    / cdiv 9303   NNcn 9626   2c2 9675   ZZcz 9903    seq cseq 10924    ~~> cli 11835   sum_csu 12035
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036
  Copyright terms: Public domain W3C validator