Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trisegint Unicode version

Theorem trisegint 24058
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
trisegint  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
Distinct variable groups:    A, q    B, q    C, q    D, q    E, q    N, q    P, q

Proof of Theorem trisegint
StepHypRef Expression
1 simpl1 963 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  N  e.  NN )
2 simpl23 1040 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  C  e.  ( EE `  N ) )
3 simpl21 1038 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  A  e.  ( EE `  N ) )
4 simpl31 1041 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  D  e.  ( EE `  N ) )
52, 3, 43jca 1137 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( C  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
6 simpl32 1042 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E  e.  ( EE `  N ) )
7 simpl33 1043 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  P  e.  ( EE `  N ) )
86, 7jca 520 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )
91, 5, 83jca 1137 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) ) )
10 simpr2 967 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E  Btwn  <. D ,  C >. )
11 btwncom 24044 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E  Btwn  <. D ,  C >. 
<->  E  Btwn  <. C ,  D >. ) )
121, 6, 4, 2, 11syl13anc 1189 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E  Btwn  <. D ,  C >.  <-> 
E  Btwn  <. C ,  D >. ) )
1310, 12mpbid 203 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E  Btwn  <. C ,  D >. )
14 simpr3 968 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  P  Btwn  <. A ,  D >. )
1513, 14jca 520 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E  Btwn  <. C ,  D >.  /\  P  Btwn  <. A ,  D >. ) )
16 axpasch 23976 . . . 4  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( ( E  Btwn  <. C ,  D >.  /\  P  Btwn  <. A ,  D >. )  ->  E. r  e.  ( EE `  N
) ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) ) )
179, 15, 16sylc 58 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E. r  e.  ( EE `  N
) ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )
18 simp1l1 1053 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  N  e.  NN )
1963ad2ant1 981 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  E  e.  ( EE `  N ) )
2023ad2ant1 981 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  C  e.  ( EE `  N ) )
2133ad2ant1 981 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  A  e.  ( EE `  N ) )
2219, 20, 213jca 1137 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( E  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
23 simp2 961 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
r  e.  ( EE
`  N ) )
24 simpl22 1039 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  B  e.  ( EE `  N ) )
25243ad2ant1 981 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  B  e.  ( EE `  N ) )
2623, 25jca 520 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( r  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
2718, 22, 263jca 1137 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( r  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) ) )
28 simp3l 988 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
r  Btwn  <. E ,  A >. )
29 simp1r1 1056 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. A ,  C >. )
30 btwncom 24044 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
3118, 25, 21, 20, 30syl13anc 1189 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
3229, 31mpbid 203 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. C ,  A >. )
3328, 32jca 520 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( r  Btwn  <. E ,  A >.  /\  B  Btwn  <. C ,  A >. ) )
34 axpasch 23976 . . . . . 6  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  (
r  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( ( r 
Btwn  <. E ,  A >.  /\  B  Btwn  <. C ,  A >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <.
r ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
3527, 33, 34sylc 58 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  E. q  e.  ( EE `  N ) ( q  Btwn  <. r ,  C >.  /\  q  Btwn  <. B ,  E >. ) )
36 simpll1 999 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) ) )
3736, 1syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  N  e.  NN )
3836, 7syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  P  e.  ( EE `  N ) )
39 simpll2 1000 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  r  e.  ( EE `  N ) )
4038, 39jca 520 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( P  e.  ( EE `  N
)  /\  r  e.  ( EE `  N ) ) )
41 simplr 734 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  q  e.  ( EE `  N ) )
4236, 2syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  C  e.  ( EE `  N ) )
4341, 42jca 520 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( q  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
4437, 40, 433jca 1137 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) )  /\  (
q  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) ) ) )
45 simpl3r 1016 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  -> 
r  Btwn  <. P ,  C >. )
4645anim1i 554 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( r  Btwn  <. P ,  C >.  /\  q  Btwn  <. r ,  C >. ) )
47 btwnexch2 24053 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  /\  ( q  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  (
( r  Btwn  <. P ,  C >.  /\  q  Btwn  <.
r ,  C >. )  ->  q  Btwn  <. P ,  C >. ) )
4844, 46, 47sylc 58 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  q  Btwn  <. P ,  C >. )
4948ex 425 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  -> 
( q  Btwn  <. r ,  C >.  ->  q  Btwn  <. P ,  C >. ) )
5049anim1d 549 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  -> 
( ( q  Btwn  <.
r ,  C >.  /\  q  Btwn  <. B ,  E >. )  ->  (
q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
5150reximdva 2656 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( E. q  e.  ( EE `  N
) ( q  Btwn  <.
r ,  C >.  /\  q  Btwn  <. B ,  E >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
5235, 51mpd 16 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  E. q  e.  ( EE `  N ) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) )
5352rexlimdv3a 2670 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E. r  e.  ( EE `  N ) ( r 
Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
5417, 53mpd 16 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) )
5554ex 425 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    e. wcel 1688   E.wrex 2545   <.cop 3644   class class class wbr 4024   ` cfv 5221   NNcn 9741   EEcee 23923    Btwn cbtwn 23924
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-sum 12153  df-ee 23926  df-btwn 23927  df-cgr 23928  df-ofs 24013
  Copyright terms: Public domain W3C validator