Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlco Unicode version

Theorem trlco 29605
Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.)
Hypotheses
Ref Expression
trlco.l  |-  .<_  =  ( le `  K )
trlco.j  |-  .\/  =  ( join `  K )
trlco.h  |-  H  =  ( LHyp `  K
)
trlco.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlco.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlco  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )

Proof of Theorem trlco
StepHypRef Expression
1 trlco.l . . . 4  |-  .<_  =  ( le `  K )
2 eqid 2253 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 trlco.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 28884 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p  .<_  W )
543ad2ant1 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  E. p  e.  ( Atoms `  K )  -.  p  .<_  W )
6 simpl1 963 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simpl2 964 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  F  e.  T
)
8 simpl3 965 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  G  e.  T
)
9 simpr 449 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )
10 trlco.j . . . . . 6  |-  .\/  =  ( join `  K )
11 trlco.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
12 trlco.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
13 eqid 2253 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
141, 10, 3, 11, 12, 13, 2trlcolem 29604 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )
156, 7, 8, 9, 14syl121anc 1192 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )
1615exp32 591 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( p  e.  ( Atoms `  K )  ->  ( -.  p  .<_  W  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) ) ) )
1716rexlimdv 2628 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( E. p  e.  ( Atoms `  K )  -.  p  .<_  W  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) ) )
185, 17mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2510   class class class wbr 3920    o. ccom 4584   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  trlcone  29606  cdlemg46  29613  trljco  29618  tendopltp  29658  dialss  29925  diblss  30049
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator